Modelling and stability of supply networks

Sergey Dashkovskiy University of Bremen/Bayreuth, Germany

Lund, May 20, 2010

Contents

Logistics networks

Global Logistics networks Modelling

Introduction to ISS

Comparison functions Input-to-State Stability ISS-Lyapunov function

Network of *n* systems

Small-gain condition for *n* systems

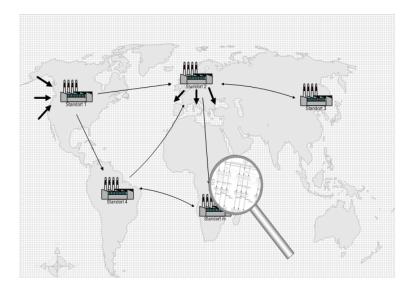
Interpretations

Relation to known results Associate discrete time system Geometric interpretation Ω -path and ISS-Lyapunov function

Examples

Conclusions

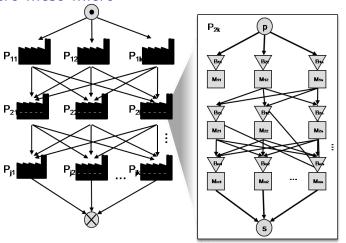
Global supply chains and logistics networks

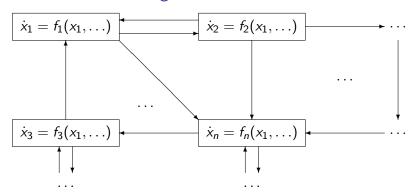


Macro-meso-micro

Logistics networks

0000





$$\dot{x}_1 = f_1(x_1,\ldots,x_n,u_1)$$
:

 $\dot{x}_n = f_n(x_1,\ldots,x_n,u_n)$

5/29

Approaches

- ► continuous (ODE, PDE)
- discrete
- hybrid
- ▶ time delays
- **•** . .

Approaches

- continuous (ODE, PDE)
- discrete
- hybrid
- time delays
- **.**.

Problems

- nonlinear behavior
- large number of nodes
- lack of information,
- permanent disturbances (internal, external)
- ⇒ decentralized control

Approaches

- continuous (ODE, PDE)
- discrete
- hybrid
- ▶ time delays
- **.**..

Problems

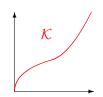
- nonlinear behavior
- large number of nodes
- lack of information,
- permanent disturbances (internal, external)
- ⇒ decentralized control

Does it work (optimality, stability, robustness, ...)?

Comparison functions

Definition

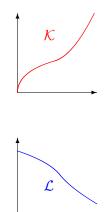
▶ $\gamma: \mathbb{R}_+ \to \mathbb{R}_+$ is called \mathcal{K} -function, if γ is continuous and strictly monotone increasing with $\gamma(0) = 0$ γ is a \mathcal{K}_{∞} -function, if it unbounded and $\gamma \in \mathcal{K}$.



Comparison functions

Definition

- $\gamma: \mathbb{R}_+ \to \mathbb{R}_+$ is called \mathcal{K} -function, if γ is continuous and strictly monotone increasing with $\gamma(0) = 0$ γ is a \mathcal{K}_{∞} -function, if it unbounded and $\gamma \in \mathcal{K}$.
- ▶ $\beta: \mathbb{R}_{\geq 0} \times \mathbb{R}_+ \to \mathbb{R}_+$ is called \mathcal{KL} -function, if
 - \triangleright β is continuous
 - ▶ $\beta(\cdot,t) \in \mathcal{K} \quad \forall t \geq 0$ and
 - $\beta(s,t) \downarrow 0$ for $t \to \infty$ and all $s \ge 0$.



Input-to-State Stability (ISS)

Definition (Sontag, 1989)

The system

Logistics networks

$$\dot{x}(t) = f(x(t), u(t))$$

is called ISS, if there are $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that

$$||x(t)|| \leq \beta(||x(0)||, t) + \gamma(||u||_{\infty}),$$

for all $x(0) \in \mathbb{R}^n$, $t \geq 0$, $u \in L_{\infty}$.

Input-to-State Stability (ISS)

Definition (Sontag, 1989)

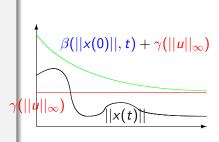
The system

$$\dot{x}(t) = f(x(t), u(t))$$

is called ISS, if there are $\beta\in\mathcal{KL}$ and $\gamma\in\mathcal{K}$ such that

$$||x(t)|| \le \beta(||x(0)||, t) + \gamma(||u||_{\infty}),$$

for all $x(0) \in \mathbb{R}^n$, $t \ge 0$, $u \in L_{\infty}$.



Intuitive example

$$|x(t)| < \beta(|x(0)|, t) + \gamma(||u||_{\infty})$$

$$U \longrightarrow \sum$$

$$\Sigma$$
: $\dot{x} = f(x, u)$

u: input

x : state

input-to-state stability \sim the level of x is proportional

to the level of u

Intuitive example

$$|x(t)| < \beta(|x(0)|, t) + \gamma(||u||_{\infty})$$

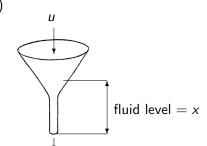
$$u \longrightarrow \sum X$$

$$\Sigma$$
: $\dot{x} = f(x, u)$

u: input

x : state

input-to-state stability \sim the level of x is proportional to the level of u



Intuitive example

$$|x(t)| < \beta(|x(0)|, t) + \gamma(||u||_{\infty})$$

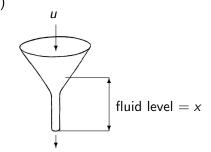
$$u \longrightarrow \sum \qquad x$$

$$\Sigma$$
: $\dot{x} = f(x, u)$

u: input

x : state

input-to-state stability \sim the level of x is proportional to the level of u



stability
$$\Leftarrow$$
 diameter $d = g(x)$

ISS-Lyapunov function

Definition

 $V:\mathbb{R}^n o \mathbb{R}_{\geq 0}$ is an ISS-Lyapunov function

if there are $\psi_1, \psi_2 \in \mathcal{K}_{\infty}, \, \chi \in \mathcal{K}$ and a pos. def. function α such that

$$\psi_1(|x|) \le V(x) \le \psi_2(|x|), \quad x \in \mathbb{R}^n,$$

$$V(x) \ge \chi(|u|) \Rightarrow \nabla V(x) f(x, u) \le -\alpha(V(x)).$$

The function χ in then called Lyapunov-gain.

ISS-Lyapunov function

Definition

Logistics networks

 $V: \mathbb{R}^n \to \mathbb{R}_{>0}$ is an ISS-Lyapunov function

if there are $\psi_1, \psi_2 \in \mathcal{K}_{\infty}, \chi \in \mathcal{K}$ and a pos. def. function α such that

$$\psi_1(|x|) \leq V(x) \leq \psi_2(|x|), \quad x \in \mathbb{R}^n,$$

$$V(x) \ge \chi(|u|) \Rightarrow \nabla V(x) f(x, u) \le -\alpha(V(x)).$$

The function χ in then called Lyapunov-gain.

Theorem (Sontag & Wang (1995))

The system $\dot{x}(t) = f(x(t), u(t))$ is ISS

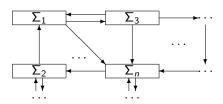
Network of *n* systems

Consider

Logistics networks

$$\dot{x}_1 = f_1(x_1, \dots, x_n, u)
\vdots
\dot{x}_n = f_n(x_1, \dots, x_n, u)$$

$$f_i: \mathbb{R}^{\sum_j N_j + N_u} \to \mathbb{R}^{N_i}$$



Network of *n* systems

Consider

Logistics networks

$$\dot{x}_1 = f_1(x_1, \dots, x_n, u)
\vdots
\dot{x}_n = f_n(x_1, \dots, x_n, u)$$

$$f_i: \mathbb{R}^{\sum_j N_j + N_u} \to \mathbb{R}^{N_i}$$

such that

$$||x_i(t)|| \leq \beta_i(||x_i(0)||,t) + \sum_{j=1}^n \gamma_{ij}(||x_{j[0,t]}||_{\infty}) + \eta(||u_{[0,t]}||_{\infty})$$

where $\gamma_{ii} \equiv 0$ or $\gamma_{ii} \in \mathcal{K}$, and $\gamma_{ii} := 0$.

The gain-matrix

$$\Gamma := (\gamma_{ij}) = \begin{bmatrix} 0 & \gamma_{12} & \dots & \dots & \gamma_{1n} \\ \gamma_{21} & 0 & \gamma_{23} & \dots & \gamma_{2n} \\ \vdots & & & \vdots \\ \gamma_{n-1,1} & \dots & \gamma_{n-1,n-2} & 0 & \gamma_{n-1,n} \\ \gamma_{n1} & \dots & \dots & \gamma_{n,n-1} & 0 \end{bmatrix}$$

Logistics networks

$$\Gamma := (\gamma_{ij}) = \begin{bmatrix} 0 & \gamma_{12} & \dots & \dots & \gamma_{1n} \\ \gamma_{21} & 0 & \gamma_{23} & \dots & \gamma_{2n} \\ \vdots & & & \vdots \\ \gamma_{n-1,1} & \dots & \gamma_{n-1,n-2} & 0 & \gamma_{n-1,n} \\ \gamma_{n1} & \dots & \dots & \gamma_{n,n-1} & 0 \end{bmatrix}$$

$$\Gamma:\mathbb{R}^n_+ o\mathbb{R}^n_+ \qquad \qquad \Gamma(s) = egin{bmatrix} \sum_{j=1}^n \gamma_{1j}(s_j) \ dots \ \sum_{i=1}^n \gamma_{nj}(s_i) \end{bmatrix}$$

Logistics networks

Notation:
$$x = (x_1^T, \dots, x_n^T)^T$$
 and $f = (f_1^T, \dots, f_n^T)^T$, for $\alpha_i \in \mathcal{K}_{\infty}$ let

$$D = \begin{bmatrix} (\mathsf{Id} + lpha_1) & & & & \\ & \ddots & & \\ & & (\mathsf{Id} + lpha_n) \end{bmatrix}.$$
 (*

Small-gain condition for networks

Notation: $x = (x_1^T, \dots, x_n^T)^T$ and $f = (f_1^T, \dots, f_n^T)^T$,

for $\alpha_i \in \mathcal{K}_{\infty}$ let

$$D = \begin{bmatrix} (\mathsf{Id} + \alpha_1) & & & \\ & \ddots & & \\ & & (\mathsf{Id} + \alpha_n) \end{bmatrix}. \tag{*}$$

Theorem (D., Rüffer, Wirth' 2007)

If there exists D as in (*) such that

$$\Gamma \circ D(s) \not\geq s$$
, $\forall s \in \mathbb{R}^n_+, s \neq 0$,

then the system $\dot{x} = f(x, u)$ is ISS from u to x.

Conclusions

Small-gain condition $\Gamma \circ D(s) \not \geq s$

▶ n=2; The condition $\exists D$ with $\Gamma \circ D(s) \not\geq s \ \forall s \neq 0$ is equivalent to $\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ with $(\operatorname{Id} + \alpha_1) \circ \gamma_1 \circ (\operatorname{Id} + \alpha_2) \circ \gamma_2 \leq \operatorname{Id}$. (Jiang–Teel–Praly-condition)

Small-gain condition $\Gamma \circ D(s) \not\geq s$

- ▶ n=2; The condition $\exists D$ with $\Gamma \circ D(s) \not\geq s \ \forall s \neq 0$ is equivalent to $\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ with $(\operatorname{Id} + \alpha_1) \circ \gamma_1 \circ (\operatorname{Id} + \alpha_2) \circ \gamma_2 \leq \operatorname{Id}$. (Jiang–Teel–Praly-condition)
- ▶ In case γ_{ij} are linear, i.e., Γ is a nonnegative Matrix, then the condition $\exists D$ with $\Gamma \circ D(s) \not\geq s \ \forall s \neq 0$ is equivalent to $r(\Gamma) < 1$, where r is spectral radius.

Small-gain condition $\Gamma \circ D(s) \geq s$

- n = 2: The condition $\exists D$ with $\Gamma \circ D(s) \geq s \ \forall s \neq 0$ is equivalent to $\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ with $(\mathsf{Id} + \alpha_1) \circ \gamma_1 \circ (\mathsf{Id} + \alpha_2) \circ \gamma_2 < \mathsf{Id}$. (Jiang-Teel-Praly-condition)
- ▶ In case γ_{ii} are linear, i.e., Γ is a nonnegative Matrix, then the condition $\exists D$ with $\Gamma \circ D(s) \not \geq s \ \forall s \neq 0$ is equivalent to $r(\Gamma) < 1$, where r is spectral radius.

Corollary

Let Γ be linear. If

$$r(\Gamma) < 1$$
,

then the interconnected system $\dot{x} = f(x, u)$ is input-to-state stable.

See also [Bailey 1966], [Rouche, Habets, Laloy 1977], [Hinrichsen, Karow, Pritchard 2005

Associate discrete time system

Let Γ be a nonlinear operator as above. Consider $s_{k+1} := \Gamma(s_k), \quad s_0 \in \mathbb{R}^n_{>0}, \quad k = 0, 1, 2, \dots,$ (**)

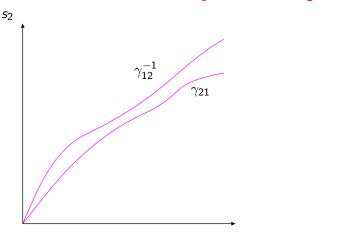
Associate discrete time system

Let Γ be a nonlinear operator as above. Consider $s_{k+1} := \Gamma(s_k), \quad s_0 \in \mathbb{R}^n_{>0}, \quad k = 0, 1, 2, \dots,$ (**)

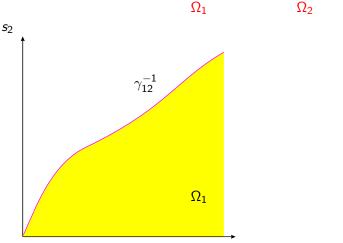
Theorem (D., Rüffer, Wirth' 2007)

If $\exists D$ with $\Gamma \circ D(s) \not\geq s$ for all $s \in \mathbb{R}^n_{\geq 0} \setminus \{0\}$

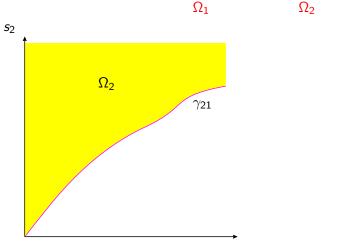
then the system (**) is globally asymptotically stabile at 0.

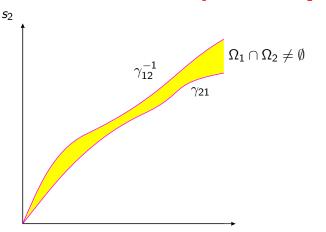


$$\begin{split} \Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \mathsf{Id} & \iff & \mathsf{either} \ \gamma_{12}(s_2) < s_1 \ \mathsf{or} \ \gamma_{21}(s_1) < s_2 \\ \gamma_{12} \circ \gamma_{21} < \mathsf{id} \end{split}$$



$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \operatorname{Id} \iff \text{ either } \gamma_{12}(s_2) < s_1 \text{ or } \gamma_{21}(s_1) < s_2$$
$$\gamma_{12} \circ \gamma_{21} < \operatorname{id}$$



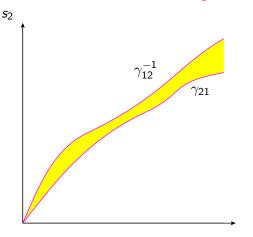


 Ω_2

Logistics networks

$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \mathsf{Id} \quad \Longleftrightarrow \quad \mathsf{either} \ \gamma_{21}(s_1) < s_1 \ \mathsf{or} \ \gamma_{12}^{-1}(s_2) > s_2$$

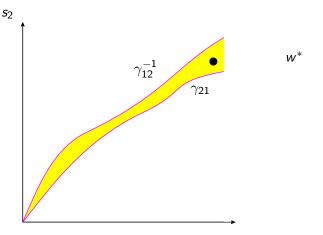
$$\Omega_1 \qquad \qquad \Omega_2$$



Logistics networks

$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \mathsf{Id} \quad \Longleftrightarrow \quad \mathsf{either} \ \gamma_{21}(\mathsf{s}_1) < \mathsf{s}_1 \ \mathsf{or} \ \gamma_{12}^{-1}(\mathsf{s}_2) > \mathsf{s}_2$$

$$\Omega_1 \qquad \qquad \Omega_2$$

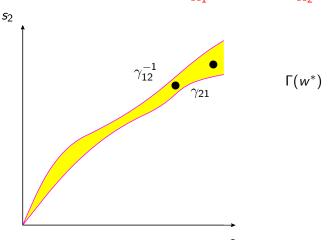


Examples

Conclusions

Logistics networks

$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not\geq \text{Id} \quad \Longleftrightarrow \quad \text{either } \gamma_{21}(s_1) < s_1 \text{ or } \gamma_{12}^{-1}(s_2) > s_2$$

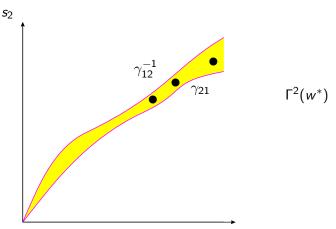


Logistics networks

Geometric interpretation for n=2

$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \mathsf{Id} \quad \Longleftrightarrow \quad \mathsf{either} \ \gamma_{21}(s_1) < s_1 \ \mathsf{or} \ \gamma_{12}^{-1}(s_2) > s_2$$

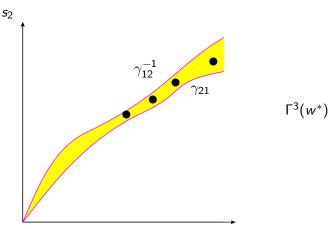
$$\Omega_1 \qquad \qquad \Omega_2$$



Logistics networks

$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \mathsf{Id} \quad \Longleftrightarrow \quad \mathsf{either} \ \gamma_{21}(s_1) < s_1 \ \mathsf{or} \ \gamma_{12}^{-1}(s_2) > s_2$$

$$\Omega_1 \qquad \qquad \Omega_2$$

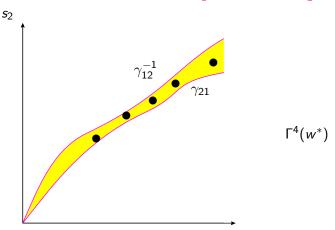


Examples

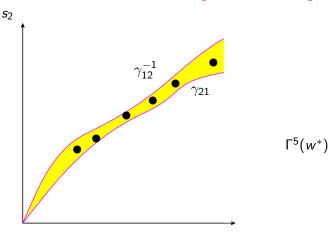
Conclusions

$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \mathsf{Id} \quad \Longleftrightarrow \quad \mathsf{either} \ \gamma_{21}(s_1) < s_1 \ \mathsf{or} \ \gamma_{12}^{-1}(s_2) > s_2$$

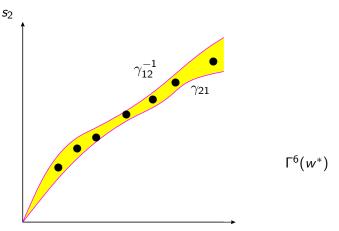
$$\Omega_1 \qquad \Omega_2$$



$$\Gamma := egin{bmatrix} 0 & \gamma_{12} \ \gamma_{21} & 0 \end{bmatrix}
ot \geq \operatorname{Id} \iff & \operatorname{either} \ \gamma_{21}(s_1) < s_1 \ \operatorname{or} \ \gamma_{12}^{-1}(s_2) > s_2 \ \Omega_1 & \Omega_2 \ \end{pmatrix}$$

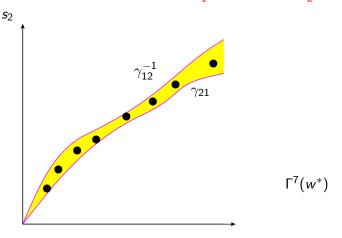


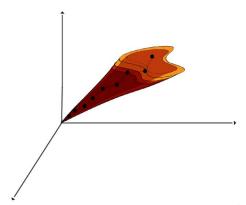
$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \mathsf{Id} \quad \Longleftrightarrow \quad \mathsf{either} \ \gamma_{21}(s_1) < s_1 \ \mathsf{or} \ \gamma_{12}^{-1}(s_2) > s_2 \\ \Omega_1 \qquad \qquad \Omega_2$$



$$\Gamma := \begin{bmatrix} 0 & \gamma_{12} \\ \gamma_{21} & 0 \end{bmatrix} \not \geq \mathsf{Id} \quad \Longleftrightarrow \quad \mathsf{either} \ \gamma_{21}(s_1) < s_1 \ \mathsf{or} \ \gamma_{12}^{-1}(s_2) > s_2$$

$$\Omega_1 \qquad \Omega_2$$





Examples

Conclusions

$$\Omega_i = \left\{ x \in \mathbb{R}^N : |x_i| > \sum_{j \neq i} \gamma_{ij}(|x_j|) \right\}.$$

Logistics networks

$$\Omega_i = \left\{ x \in \mathbb{R}^N : \ |x_i| > \sum_{j \neq i} \gamma_{ij}(|x_j|) \right\}.$$

Theorem (D., Rüffer, Wirth' 2007)

$$\Gamma(s) \not\geq s \ \forall s \neq 0, s \geq 0 \Rightarrow$$

- $\qquad \qquad \bigcap^n \Omega_i = \mathbb{R}^N \setminus \{0\}$
- $\triangleright \Omega := \bigcap^{n} \Omega_{i} \neq \emptyset$
- Ω connected and unbounded
- ightharpoonup $\Gamma(\Omega) \subset \Omega$

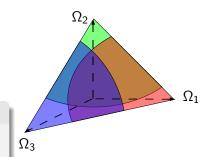
Logistics networks

$$\Omega_i = \left\{ x \in \mathbb{R}^N : \ |x_i| > \sum_{j \neq i} \gamma_{ij}(|x_j|) \right\}.$$

Theorem (D., Rüffer, Wirth' 2007)

$$\Gamma(s) \not\geq s \ \forall s \neq 0, s \geq 0 \Rightarrow$$

- $\qquad \qquad \bigcap^n \Omega_i = \mathbb{R}^N \setminus \{0\}$
- $\triangleright \Omega := \bigcap_{i=1}^{n} \Omega_i \neq \emptyset$
- Ω connected and unbounded
- ightharpoonup $\Gamma(\Omega) \subset \Omega$

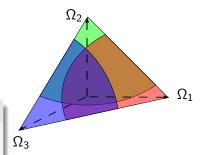


$$\Omega_i = \left\{ x \in \mathbb{R}^N : \ |x_i| > \sum_{j \neq i} \gamma_{ij}(|x_j|) \right\}.$$

Theorem (D., Rüffer, Wirth' 2007)

$$\Gamma(s) \not\geq s \ \forall s \neq 0, s \geq 0 \Rightarrow$$

- Ω connected and unbounded
- $ightharpoonup \Gamma(\Omega) \subset \Omega$



In Ω_i exists an ISS-Lyapunov function V_i with $\dot{V}_i(x) = \nabla V_i(x) \cdot f_i(x) < 0$ for $x \in \Omega_i$.

Important consequence from the small gain condition

Theorem (D., Rüffer, Wirth' 2010)

Let Γ be irreducible. Let $D = diag(Id + K_{\infty})$ be such that

$$\Gamma \circ D(s) \not\geq s$$
, $\forall s \in \mathbb{R}^n_+, s \neq 0$.

Then there exist \mathcal{K}_{∞} -functions $\sigma_1, \ldots, \sigma_n$ with $\sigma'_{i} > 0, i = 1, ..., n$ and

$$\Gamma \circ D(\sigma(t)) < \sigma(t), \quad \forall t > 0, \quad \sigma(t) = (\sigma_1(t), \dots, \sigma_n(t))^T$$

Logistics networks

Important consequence from the small gain condition

Theorem (D., Rüffer, Wirth' 2010)

Let Γ be irreducible. Let $D=diag(Id+K_{\infty})$ be such that

$$\Gamma \circ D(s) \not\geq s$$
, $\forall s \in \mathbb{R}^n_+, s \neq 0$.

Then there exist \mathcal{K}_{∞} -functions σ_1,\ldots,σ_n with $\sigma_i'>0,\ i=1,\ldots,n$ and

$$\Gamma \circ D(\sigma(t)) < \sigma(t), \quad \forall t > 0, \quad \sigma(t) = (\sigma_1(t), \dots, \sigma_n(t))^T$$

$$\sigma(t) \in \Omega := \bigcap_{i=1}^n \Omega_i \quad \forall t > 0$$

Important consequence from the small gain condition

Theorem (D., Rüffer, Wirth' 2010)

Let Γ be irreducible. Let $D = diag(Id + K_{\infty})$ be such that

$$\Gamma \circ D(s) \not\geq s$$
, $\forall s \in \mathbb{R}^n_+, s \neq 0$.

Then there exist \mathcal{K}_{∞} -functions $\sigma_1, \ldots, \sigma_n$ with $\sigma'_{i} > 0, i = 1, ..., n$ and

$$\Gamma \circ D(\sigma(t)) < \sigma(t), \quad \forall t > 0, \quad \sigma(t) = (\sigma_1(t), \dots, \sigma_n(t))^T$$

$$\sigma(t) \in \Omega := \bigcap_{i=1}^n \Omega_i \quad \forall t$$

ISS-Lyapunov function for a network

Theorem (D., Rüffer, Wirth' 2010)

Let V_i be an ISS-Lyapunov function for the i-th system

$$\psi_{i1}(|x_i|) \leq V_i(x_i) \leq \psi_{i2}(|x_i|), \quad x_i \in \mathbb{R}^{N_i},$$

$$V_i(x_i) \geq \sum_{j=1}^n \chi_{ij}(V_j(x_j)) + \gamma_i(|u_i|) \Rightarrow \nabla V_i(x) f_i(x, u_i) \leq -\alpha_i(V_i(x_i)),$$

with Lyapunov-gains χ_{ij} and $\Gamma = (\chi_{ij})_{i,j=1,...n}$.

ISS-Lyapunov function for a network

Theorem (D., Rüffer, Wirth' 2010)

Let V_i be an ISS-Lyapunov function for the i-th system

$$\psi_{i1}(|x_i|) \leq V_i(x_i) \leq \psi_{i2}(|x_i|), \quad x_i \in \mathbb{R}^{N_i},$$

$$V_i(x_i) \geq \sum_{j=1}^n \chi_{ij}(V_j(x_j)) + \gamma_i(|u_i|) \Rightarrow \nabla V_i(x) f_i(x, u_i) \leq -\alpha_i(V_i(x_i)),$$

with Lyapunov-gains χ_{ij} and $\Gamma = (\chi_{ij})_{i,j=1,...n}$. Let D be as above such that

$$\Gamma \circ D(s) \not\geq s$$
, $\forall s \in \mathbb{R}^n_+, s \neq 0$,

ISS-Lyapunov function for a network

Theorem (D., Rüffer, Wirth' 2010)

Let V_i be an ISS-Lyapunov function for the i-th system

$$\psi_{i1}(|x_i|) \leq V_i(x_i) \leq \psi_{i2}(|x_i|), \quad x_i \in \mathbb{R}^{N_i},$$

$$V_i(x_i) \geq \sum_{j=1}^n \chi_{ij}(V_j(x_j)) + \gamma_i(|u_i|) \Rightarrow \nabla V_i(x) f_i(x, u_i) \leq -\alpha_i(V_i(x_i)),$$

with Lyapunov-gains χ_{ij} and $\Gamma = (\chi_{ij})_{i,j=1,...n}$. Let D be as above such that

$$\Gamma \circ D(s) \not\geq s$$
, $\forall s \in \mathbb{R}^n_+, s \neq 0$,

then $V(x) = \max_i \{ \sigma_i^{-1}(V_i(x_i)) \}$ is an ISS-Lyapunov function for the whole System $\dot{x} = f(x, u)$.

An example with two nodes

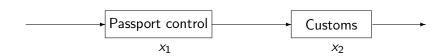


$$\dot{x}_1 = u - b_1$$

$$\dot{x}_2 = b_1 - b_2$$

An example with two nodes

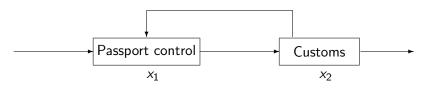
Logistics networks



$$\dot{x}_1 = u - b_1$$
 $b_1 = \frac{ax_1 + b\sqrt{x_1}}{1 + x_2}$ $\dot{x}_2 = b_1 - b_2$ $b_2 = cx_2$

Conclusions

Two nodes



$$\dot{x}_1 = u - \frac{ax_1 + b\sqrt{x_1}}{1 + x_2}$$
$$\dot{x}_2 = \frac{ax_1 + b\sqrt{x_1}}{1 + x_2} - cx_2$$

 X_2

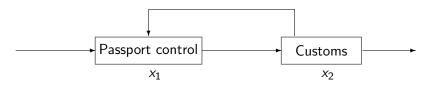
Logistics networks

Network of n systems

$$\dot{x}_{1} = u - \frac{ax_{1} + b\sqrt{x_{1}}}{1 + x_{2}} \qquad \gamma_{u}(u) = \frac{b^{2}}{4}u^{2}
\dot{x}_{2} = \frac{ax_{1} + b\sqrt{x_{1}}}{1 + x_{2}} - cx_{2} \qquad \gamma_{12}(x_{2}) = \frac{a^{2}}{b^{2}}x_{2}^{2}
\dot{x}_{21}(x_{1}) = \left(\min\left\{\frac{c}{2a}, \frac{c^{2}}{b^{2}}\right\}\right)^{\frac{1}{2}}\sqrt{x_{1}}$$

 X_1

Two nodes



$$\begin{split} \dot{x}_1 &= u - \frac{ax_1 + b\sqrt{x_1}}{1 + x_2} & \gamma_u(u) = \frac{b^2}{4}u^2 \\ \dot{x}_2 &= \frac{ax_1 + b\sqrt{x_1}}{1 + x_2} - cx_2 & \gamma_{12}(x_2) = \frac{a^2}{b^2}x_2^2 \\ \dot{x}_{12} &= \sqrt{2}\left(x_1\right) = \left(\min\left\{\frac{c}{2a}, \frac{c^2}{b^2}\right\}\right)^{\frac{1}{2}}\sqrt{x_1} \\ \dot{x}_{12} &= \sqrt{2}\left(s\right) = \frac{a^2}{b^2}\min\left\{\frac{c}{2a}, \frac{c^2}{b^2}\right\}s \leq \frac{a^2c^2}{b^4}s < s \\ &= \text{if} \quad \frac{ac}{b^2} < 1. \end{split}$$

Simulation

$$u(t) = 1.5 + \sin(t) + \sin(5t)/2$$

 $x_1(0) = 10, \quad x_2(0) = 10.$

Simulation

$$u(t) = 1.5 + \sin(t) + \sin(5t)/2$$
 $\dot{x}_1(t) = u(t) - \frac{x_1(t) + \sqrt{x_1(t)}}{1 + x_2(t)}$
 $x_1(0) = 10$, $x_2(0) = 10$. $\dot{x}_2(t) = \frac{x_1(t) + \sqrt{x_1(t)}}{1 + x_2(t)} - x_2(t)$

Simulation

$$u(t) = 1.5 + \sin(t) + \sin(5t)/2$$

 $x_1(0) = 10, \quad x_2(0) = 10.$

$$\dot{x}_1(t) = u(t) - \frac{x_1(t) + \sqrt{x_1(t)}}{1 + x_2(t)}
\dot{x}_2(t) = \frac{x_1(t) + \sqrt{x_1(t)}}{1 + x_2(t)} - x_2(t)$$

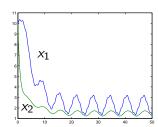
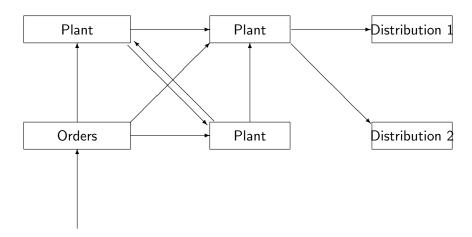
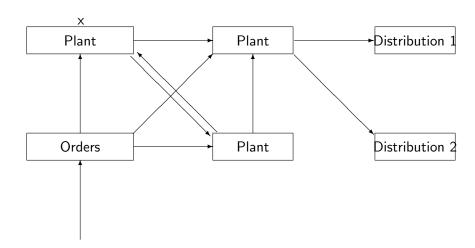
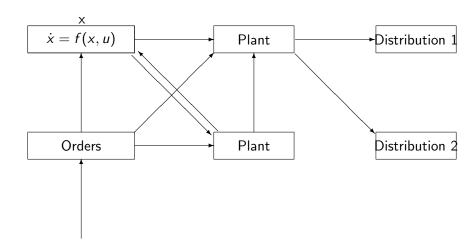
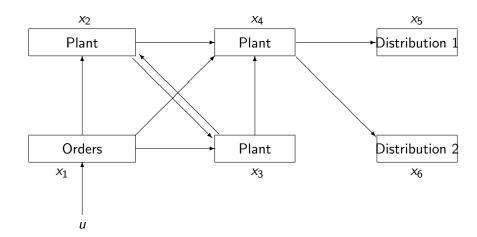


Figure: Input u and the queues x_1, x_2









State equations

$$\begin{split} \dot{x}_1 &= u - \frac{ax_1 + b\sqrt{x_1}}{1 + x_2 + x_3} \\ \dot{x}_2 &= \frac{1}{3} \frac{ax_1 + b\sqrt{x_1}}{1 + x_2 + x_3} + \frac{1}{2} \min\{b_3, c_3 x_3\} - \min\{b_2, c_2 x_2\} \\ \dot{x}_3 &= \frac{1}{3} \frac{ax_1 + b\sqrt{x_1}}{1 + x_2 + x_3} + \frac{1}{2} \min\{b_2, c_2 x_2\} - \min\{b_3, c_3 x_3\} \\ \dot{x}_4 &= \frac{1}{3} \frac{ax_1 + b\sqrt{x_1}}{1 + x_2 + x_3} + \frac{1}{2} \min\{b_2, c_2 x_2\} + \min\{b_3, c_3 x_3\} - \min\{b_4, c_4 x_4\} \\ \dot{x}_5 &= \frac{1}{2} \min\{b_4, c_4 x_4\} - c_5 x_5 \\ \dot{x}_6 &= \frac{1}{2} \min\{b_4, c_4 x_4\} - c_6 x_6 \end{split}$$

Gain-Matrix

$$\Gamma := (\gamma_{ij}) = \begin{bmatrix} 0 & a_{12}x^2 & a_{13}x^2 & 0 & 0 & 0 \\ a_{21}\sqrt{x} & 0 & a_{23}x & 0 & 0 & 0 \\ a_{31}\sqrt{x} & a_{32}x & 0 & 0 & 0 & 0 \\ a_{41}\sqrt{x} & a_{42}x & a_{43}x & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{54}x & 0 & 0 \\ 0 & 0 & 0 & a_{64}x & 0 & 0 \end{bmatrix}$$

Gain-Matrix

$$\Gamma := (\gamma_{ij}) = \begin{bmatrix} 0 & a_{12}x^2 & a_{13}x^2 & 0 & 0 & 0 \\ a_{21}\sqrt{x} & 0 & a_{23}x & 0 & 0 & 0 \\ a_{31}\sqrt{x} & a_{32}x & 0 & 0 & 0 & 0 \\ a_{41}\sqrt{x} & a_{42}x & a_{43}x & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{54}x & 0 & 0 \\ 0 & 0 & 0 & a_{64}x & 0 & 0 \end{bmatrix}$$

small-gain condition:

$$\Gamma(s) = \begin{bmatrix} a_{12}s_2^2 + a_{13}s_3^2 \\ a_{21}\sqrt{s_1} + a_{23}s_3 \\ a_{31}\sqrt{s_1} + a_{32}s_2 \\ a_{41}\sqrt{s_1} + a_{42}s_2 + a_{43}s_3 \\ a_{54}s_4 \\ a_{64}s_4 \end{bmatrix} \not \geq \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \end{bmatrix}$$

Conclusions

Logistics networks

- Logistics networks can be modelled by dynamical systems with inputs
- Stability is a fundamental property for such networks
- A stability condition for such networks is

$$\exists D: \Gamma \circ D(s) \not\geq s \quad \forall s \geq 0, s \neq 0$$

and can be used

- to verify stability
- for stabilization (in particular in MPC)
- Under the small gain condition there is a method of construction of an ISS-Lyapunov function for networks
- ▶ These results are available for other types of systems

