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Research goal

Determine sequence of signal timing plans that minimize total delay for
different traffic conditions at isolated signalized intersections (ISI):

• green durations,

• switching point.

Total delay

J =

∫ tf

t0

(
q1(t) + q2(t)

)
dt→ min

where:
qi(t): queue length for movement i at time t
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Research issues

Transient control Steady-state control
Type of models
continuous-time model X –
discrete models:

discrete-event max-plus model X X
discrete-event piece-wise affine model X X

Constraints
lost time X X
maximum and minimum green durations X X
maximum queue length X X

Optimal solution
linear programming – X
quadratic programming X X
mixed integer programming X X
Pontryagin’s maximum principle X –

new algorithm for solving control problem X –
Necessary and sufficient conditions X X

X = main topic of this presentation
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Transient control – problem definition

Transient control: problem definition

Given arrival and departure rates, and initial queue lengths, calculate
control sequence that optimize a given criterion J.

models

• continuous-time models

• discrete-event models

• deterministic and stochastic models

traffic conditions

• undersaturated

• oversaturated

optimization criteria

• minimum total delay

• maximum throughput

mathematical programming problems

• classic optimization

• linear and quadratic programming

• mixed integer programming

• Pontryagin’s maximum principle
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Traffic terminology

Traffic terminology

• Green duration, gi [s]

• Lost time, Li [s]

• Cycle length, C [s]: C =
∑

i(gi +Li)

• Queue length, qi(t) [veh]

d2(t) a2(t)

q1(t)

q2(t)

d1(t)

a1(t)

• Arrival rate, ai(t) [veh/s]

• Saturation flow, si(t) [veh/s]

• Departure rate, di(t) [veh/s]

• Throughput, γi(t) [veh/s]:
γi = si · gi

C

• Green split, ui [−]: ui = gi
C

C

di = si

Time

Flow

γi

gi

Oversaturated
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“Bang-bang” control

“Bang-bang” control concept
Assumption (Gazis and Potts, 1963; Gazis, 1964)

The total delay is minimized if the queues of all movements are dissolved
simultaneously.

3. Literature survey on isolated control intersection 35

A1(t) , G1(t)

Time[s]

Time[s]

γ1,max

γ1,min

γ2,min

γ2,max

ts

ts

[veh]

A2(t) , G2(t)
[veh]

A2(t)

G2(t)

A1(t)

G1(t)

tf

tf

Stage I Stage II

• two movements, d1 > d2

• Cumulative arrival, Ai(t) [veh]:

Ai(t) =
∫ t

0
ai(τ)dτ

• Cumulative throughput, Gi(t) [veh]:

Gi(t) =
∫ t

0
γi(τ)dτ

• qi(t) = Ai(t)−Gi(t)

Optimal policy

• Stage I: γ1,max and γ2,min.

• Stage II: γ1,min and γ2,max.

where: ts [s] switching point, tf [s] final
time.
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“Bang-bang” control

Traffic “bang-bang” control literature survey
• Gazis and Potts (1963): optimal ts and tf are found graphically by trial and

error.

• Gazis (1964): optimal “bang-bang” solution by using Pontryagin’s Maximum
Principle.

• Michalopoulos and Stephanopoulos (1977,78): maximum queue lengths
constraint and system of two intersections.

• Chang (2000): discrete minimal delay model.

(q1,init, q2,init)

q2(t)
[veh]

q1(t)
[veh]

(0, 0)

Stage I

ts

tf

t0

Stage II
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Continuous-time models

(q1,init, q2,init)

q2(t)
[veh]

q1(t)
[veh]

(0, 0)

t0

ts

tf

• control variables: green splits,

• final queue lengths:
∀i : qi(tf ) = 0,

• queues dissolve at the same
time.

Contributions to continuous-time models

• simultaneous dissipation assumption is relaxed:
• new mathematical model for queue dynamics (slack variables)
• optimal policy by PMP for new model

• deriving optimal solutions for cases with additional constraints

• state (queue length) feedback control
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Brief description

Brief description of Pontryagin’s Maximum Principle

Classical optimal control problem (OCP)

∫ T

0
f0(x, u)dt→ min (1)

dx(t)

dt
= f(x, u) (2)

x(0) = x0, x(T ) = xT (3)

umin ≤ u(t) ≤ umax (4)

where:
control variables u(t) ∈ Rm, state
variables x(t) ∈ Rn, f(x, u) ∈ Rn, and
m ≤ n.

According to PMP:

H = pT · f(x, u)− f0(x, u) (5)

dp

dt
= −

∂H

∂x

T

= −
∂f

∂x

T

p+
∂f0

∂x

T

(6)

Hamiltonian = H,
costate variables p(t) ∈ Rn.
If ∃(x∗, u∗) → ∃ p∗ such that:

(a) H(x∗, u∗, p∗) ≥ H(x∗, u, p∗) ⇒
∂H/∂u = 0 if H is differentiable w.r.t
u,

(b) x∗ and p∗ satisfy (2) and (6),

(c) u∗ satisfies (4),

(d) the end conditions in (3) must hold.
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Optimal traffic control

Optimal traffic control problem
(continuous-time model)

J =

∫ tf

t0

(
q1(t) + q2(t)

)
dt→ min

dq1(t)

dt
= a1(t)− d1(t) · u(t) + v1(t)

dq2(t)

dt
= a2(t)− d2(t) ·

(
1− u(t)

)
+ v2(t)

q1(tf ) = 0, q2(tf ) = 0

0 ≤ q1(t), 0 ≤ q2(t)

umin ≤ u(t) ≤ umax

where:
control variable u(t), state variables q1(t), q2(t),
and artificial slack variables v1(t) ≥ 0, v2(t) ≥ 0.

Assumption

∀t, ai(t) = ai and di(t) = di, i = 1, 2.

(q1,init, q2,init)

q2(t)
[veh]

q1(t)
[veh]

(0, 0)

t0

ts

tf

from condition of non-increasing
queue lengths:

0 ≤ v1(t) ≤ v1,max(t)

0 ≤ v2(t) ≤ v2,max(t)

where

v1,max(t) = max
[
0, d1 · u(t)− a1

]
v2,max(t) = max

[
0, d2 − d2 · u(t)− a2

]
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Optimal control solution

Optimal control solution for the continuous-time model
• The Hamiltonian function, H, is formed as

H = p1(t) · a1 + p2(t) · a2 +
(
p2(t) · d2 − p1(t) · d1

)
· u(t)+

+p1(t) · v1(t) + p2(t) · v2(t)− p2(t) · d2 − q1(t)− q2(t)

where p1(t), p2(t) satisfy

dp1

dt
= −

∂H

∂q1
= 1

dp2

dt
= −

∂H

∂q2
= 1

• The optimal control solution obtained by maxu,v1,v2 H

v1(t) =

{
v1,max(t) if p1(t) > 0,

0 if p1(t) < 0,

v2(t) =

{
v2,max(t) if p2(t) > 0,

0 if p2(t) < 0,

u(t) =

{
umax if S(t) > 0,

umin if S(t) < 0,

where the switching function S(t) , p2(t) · d2 − p1(t) · d1 .
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Switching function

Switching function S(t)

Assumption

d1 > d2

S(t) , p2(t) · d2 − p1(t) · d1
dp1
dt

= 1
dp2
dt

= 1

⇒ dS(t)/dt = d2 − d1 < 0

t0 tstf tf Time

S(t)

t0 tf Time

S(t)
S(t0) < 0S(t0) > 0

• at switching point S(ts) = 0,
• S(t0) ≤ 0 → no switching point,
• S(t0) > 0

• initial queue lengths are such that tf > ts → a single switching point,
• initial queue lengths are such that tf ≤ ts → no switching point.
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Optimal control cases

Optimal control cases
umin ≤ u(t) ≤ umax

Definitions

uL , a1
d1

; uH , d2−a2
d2

Necessary condition for

• decreasing both queue
lengths

a1

d1
+
a2

d2
< 1 or uL < uH

I uL < umin < uH < umax

II uL < umin < umax < uH

III umin < uL < umax < uH

IV umin < uL < uH < umax

J =
∫ tf
t0

(
q1(t) + q2(t)

)
dt → min

dq1(t)
dt

= a1(t) − d1(t) · u(t) + v1(t)

dq2(t)
dt

= a2(t) − d2(t) ·
(
1 − u(t)

)
+ v2(t)

dq1(t)
dt < 0

uL

dq2(t)
dt < 0

u(t)

dq1(t)
dt < 0

dq2(t)
dt > 0

dq1(t)
dt > 0

dq2(t)
dt < 0

dq1(t)
dt = 0

dq2(t)
dt < 0

uH

dq1(t)
dt < 0

dq2(t)
dt = 0

umaxuminCase IV :

umaxuminCase III :

umaxuminCase II :

umaxuminCase I :

• subcases: no switching point (function of initial queue lengths).
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Optimal control cases

Case I: uL < umin < uH < umax

see (??) and (??). Equation (??) shows that the most effective discharge control is

connected with larger coefficient d1: at first q1(t) should be decreased, and only then

the queue q2(t) should be considered. The optimal policy is hence determined by the

(at most) single switching point. The case when S(t0) ≤ 0 will have no switching

point, and is subsumed under the second stage of the switched case.

In the following different cases are investigated according to the relative values of

uL, uH, umin, and umax.

5.3.1 Case I – uL < umin < uH < umax

First, let us assume that in Case I there will be a switching point ts. Then, for t < ts,

it holds that u(t) = umax which causes q2(t) to increase and q1(t) to decrease, see

Fig. ??. After the switching point ts, we have u(t) = umin, ts ≤ t, and q1(t), q2(t) are

both decreasing.
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q
2
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q 1 (
t)

 [v
eh

]

q
1
(t)=R⋅ q

2
(t)

q
1
(t)=r⋅ q

2
(t)

Trajectory 1 Trajectory 2

Figure 5.2: Case I, two different optimal trajectories of the linear programming solu-
tions q1(t) vs. q2(t) and lines q1(t)/q2(t) = r, q1(t)/q2(t) = R.

[?] makes the assumption that both queues become zero simultaneously: q1(tf ) =

90

Switching line

• Gazis (1964):
q1(t) = r · q2(t)

• Haddad (2010):

q1(t) = R · q2(t)

r =
d1·(umin−uL)
d2·(uH−umin)

R = umin−uL
uH−umin

⇒ r = d1/d2 ·R
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Optimal control cases

State feedback control for Case I

see (??) and (??). Equation (??) shows that the most effective discharge control is

connected with larger coefficient d1: at first q1(t) should be decreased, and only then

the queue q2(t) should be considered. The optimal policy is hence determined by the

(at most) single switching point. The case when S(t0) ≤ 0 will have no switching

point, and is subsumed under the second stage of the switched case.

In the following different cases are investigated according to the relative values of

uL, uH, umin, and umax.

5.3.1 Case I – uL < umin < uH < umax

First, let us assume that in Case I there will be a switching point ts. Then, for t < ts,

it holds that u(t) = umax which causes q2(t) to increase and q1(t) to decrease, see

Fig. ??. After the switching point ts, we have u(t) = umin, ts ≤ t, and q1(t), q2(t) are

both decreasing.
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Trajectory 1 Trajectory 2

Figure 5.2: Case I, two different optimal trajectories of the linear programming solu-
tions q1(t) vs. q2(t) and lines q1(t)/q2(t) = r, q1(t)/q2(t) = R.

[?] makes the assumption that both queues become zero simultaneously: q1(tf ) =

90

 u(t)
v1(t)
v2(t)

 =



umax

0

0

 if q1(t) > R · q2(t), q1(t) > 0, q2(t) > 0,

umin

0

0

 if q1(t) ≤ R · q2(t), q1(t) > 0, q2(t) > 0,

 umin

v1,max(t)

0

 if q1(t) ≤ R · q2(t), q1(t) = 0, q2(t) ≥ 0.
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Numerical example

Numerical comparison example for Case II

Flow rates: a1 a2 d1 d2
[veh/s] 0.15 0.1 0.55 0.3

Green splits: uL uH umin umax

[−] 0.2727 0.6667 0.4 0.5

Initial queues: q1(t0) q2(t0)
[veh] r · 15 15

Coefficient: r R
[−] 0.875 0.4773

m1

m2

1 Trajectory that switches umax to
umin at q1(t)/q2(t) = r

( Gazis 1964 ),

2 Optimal trajectory that switches
umax to umin at q1(t)/q2(t) = R

( Haddad 2010 ).

Total delay: J1 J2

[veh · s] 2636.7 2334.4
q2(t)15

q1(t)
q1(t) = r · q2(t)

15 · r

q1(t) = R · q2(t)
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Summary of optimal control cases

Summary of optimal control cases

(5.67), respectively. The initial queues in cases II.a and III.a satisfy the inequality

q1 > M · q2; in Case II: R < q1/q2 ≤ M ; in cases I.a and II.b: q1 ≤ R · q2; in Case I:

q1 > R · q2, in Case III: q1 ≤ M · q2; and in Case IV the inequalities q1 ≥ 0, q2 ≥ 0.

The control laws for cases I and II are found in (5.78); for cases I.a and II.b in (5.86);

for case II.a and III.a in (5.96); and for cases III and IV the control laws are given in

(5.106).

Case II.a
and
Case III.a

Case I.a
and
Case II.b

Case IV

Case II

Case III

Case III

Case I

Case I
q1 = M · q2

q1

q2

q1 = R · q2

Figure 5.8: Summary of optimal control cases as a function of the relative relation
between the green split bounds, and initial queue lengths conditions in the first quad-
rant of the (q2, q1)-plane. The slopes R and M are defined in equations (5.63), and
(5.67), respectively.

110

function of:

• relative relation between
the green split bounds,

• initial queue lengths.

M =
dq1/dt
dq2/dt

|u=umax = a1−d1·umax
a2−d2·(1−umax)
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Queue lengths at cycle k for m1

• at the end of red light:

q1(t2k+2) = q1(t2k+1) + a1(t2k+1) · g2(k)

• at the end of green light:

q1(t2k+1) = max
(
q1(t2k) +

(
a1(t2k) − d1(t2k)

)
· g1(k), 0

)

g1(k)

t2k

Time(s)
ZQLP

g2(k)

t2k+1 t2k+2

q1(t2k+2)

Cycle k(veh)
q1(t)

q1(t2k+1)

Green Red

q1(t2k)

• Discrete-event Max-Plus (DMP) problem

min
g1(0),g2(0),g1(1),g2(1),··· ,g1(N−1),g2(N−1)

J

subject to

q1(t2k+1) = max
(
q1(t2k) +

(
a1(t2k) − d1(t2k)

)
· g1(k), 0

)
q1(t2k+2) = q1(t2k+1) + a1(t2k+1) · g2(k)

q2(t2k+1) = q2(t2k) + a2(t2k) · g1(k)

q2(t2k+2) = max
(
q2(t2k+1) +

(
a2(t2k+1) − d2(t2k+1)

)
· g2(k), 0

)

for k = 0, 1, 2, . . . , N − 1.
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Discrete-event models

(q1,init, q2,init)

q2(t)
[veh]

q1(t)
[veh]

(q1,ss, q2,ss)
(0, 0)

t0

ts
t̂f

(q1(t), q2,ss)

t̂s

tf

• the “saw tooth” profile
evolution,

• two time instants: t̂s and t̂f
coincide exactly with an end of
a cycle.

Contributions to discrete-event models

• two decision variables per cycle: green split and cycle length,

• relaxing simultaneous dissipation assumption,

• modeling zero-queue length periods (ZQLP’s),

• final queue lengths = steady-state queues.
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Optimal discrete formulations

modeling ZQLP

• max-plus equations: a = max(b + c, 0) where a, b, c ∈ R.

• piece-wise affine equations: g(x) =

{
f(x) if f(x) > 0,

0 if f(x) ≤ 0.

Two discrete-event problems:

1 discrete-event max-plus problem:
max-plus equations → linear inequality equations:

a = max(b+ c, 0)⇒
{
a ≥ b+ c

a ≥ 0

2 discrete-event Piece-Wise Affine (PWA) problem:
PWA equations → mixed integer equations
• a nonlinear J : mixed-integer programming (MIP) algorithms,
• a linear J : mixed-integer linear programming (MILP) algorithms.
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Contributions

• A continuous-time model: introduction of slack-variables,

• Discrete-event models: discrete-event piecewise and discrete-event
max-plus models. The models are mathematically capable to
describe ZQLP’s,

• Pontryagin’s Maximum Principle: the PMP is used to solve the
optimal control problem for ISI,

• LP, SQP, MIP, MILP: different mathematical methods can solve
the traffic control problems,

• Feedback control: the optimal control law is formulated in
feedback form as a function of current queue lengths,

• Dissipation pattern: the simultaneous dissipation assumption on
the optimal solution of the queue lengths is relaxed,

• Switching line: the switching line of the optimal trajectory in the
bang-bang control proposed by Gazis (1964) is adjusted.

Optimal Control for Isolated Signalized Intersections 21 / 23



Introduction PMP for ISI Discrete models Contributions Future research

Future research

• Model extension for isolated signalized intersections,

• Optimal control for urban traffic systems,

• Hybrid dynamical models for traffic networks.
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