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Research goal

Determine sequence of signal timing plans that minimize total delay for
different traffic conditions at isolated signalized intersections (ISI):

e green durations,

e switching point.

Total delay

J = /t:f (q1 (t) + qz(t))dt — min

where:
gi(t): queue length for movement ¢ at time ¢
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Research issues

Transient control

Steady-state control

Type of models

continuous-time model v -
discrete models:
discrete-event max-plus model v v
discrete-event piece-wise affine model v v
Constraints
lost time v v
maximum and minimum green durations v v
maximum queue length v v
Optimal solution
linear programming - v
quadratic programming v Ve
mixed integer programming v v
Pontryagin's maximum principle v -
new algorithm for solving control problem v -
Necessary and sufficient conditions v v

v/ = main topic of this presentation
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Transient control — problem definition

Transient control: problem definition

Given arrival and departure rates, and initial queue lengths, calculate
control sequence that optimize a given criterion J.

models optimization criteria

® continuous-time models ® minimum total delay

® discrete-event models ® maximum throughput

mathematical programming problems
traffic conditions ® classic optimization

® undersaturated ® linear and quadratic programming

® deterministic and stochastic models

® oversaturated ® mixed integer programming

® Pontryagin's maximum principle

W [Technion
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Traffic terminology

Traffic terminology

® Green duration, g; [s] ® Arrival rate, a;(t) [veh/s]

® Lost time, L; [s] ® Saturation flow, s;(t) [veh/s]

e Cycle length, C [s]: C =3",(gi+ Ly) ® Departure rate, d;(t) [veh/s]

® Queue length, q;(t) [veh] ° Throughpgqt, ~i(t) [veh/s]:
Yi = Si

® Green split, u; [~]: u; = &

Oversaturated
Flow

‘dl@ﬁ (RN S / AU

E a(t)
Time
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“Bang-bang” control

“Bang-bang” control concept

Assumption (Gazis and Potts, 1963; Gazis, 1964)

The total delay is minimized if the queues of all movements are dissolved
simultaneously.

e two movements, di > da

Ai(t) , Ga(t) : .
[veb] | 1 e Cumulative arrival, A;(t) [veh]:
A | Ai(t) = [ ai(r)dr
Gl(t)i 3 ® Cumulative throughput, G;(t) [veh]:
1 1 t
Y1,max i | Gl (t) = fo Vi (T)dT
. Stagel its Stage 11 itf Timel[s] ® gi(t) = Ai(t) — Gi(t)
A3lt) .Galt) 3 |
[veh] i i Optimal policy
As(t)_— i
3 - e Stage I: ¥1,max and Y2, min-
O o Stage Il: v1,min and Y2, max.
2,min; t T where: ts [s] switching point, t [s] final
s s mets time.

W [Technion
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“Bang-bang” control

Traffic “bang-bang” control literature survey
® Gazis and Potts (1963): optimal ts and t; are found graphically by trial and
error.

® Gazis (1964): optimal “bang-bang” solution by using Pontryagin's Maximum
Principle.

® Michalopoulos and Stephanopoulos (1977,78): maximum queue lengths
constraint and system of two intersections.

® Chang (2000): discrete minimal delay model.

@(t) 4
[veb] 10 6 (q1,imit G2,init)
Stage I
ts
/ Stage 11
(0,0) Q1(t)

[veh]
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Continuous-time models

(ZQ(t) A
e tO (q1,init: q2,init>
e control variables: green splits,
e final queue lengths:
: Vi:g(ty) =0,
> e queues dissolve at the same
t time.
(0,0) @ (t)

[veh]

Contributions to continuous-time models

o simultaneous dissipation assumption is relaxed:
¢ new mathematical model for queue dynamics (slack variables)
e optimal policy by PMP for new model

o deriving optimal solutions for cases with additional constraints

o state (queue length) feedback control

&‘Technlpn
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Brief description

Discrete models

Contributions

Brief description of Pontryagin's Maximum Principle

Classical optimal control problem (OCP)

T
/ fo(z,u)dt — min
0
O fa,u)

z(0) = zo, z(T) =z
Umin < u(t) < Umax
where:
control variables u(t) € R™, state

variables z(t) € R"™, f(z,u) € R™, and
m < n.

1

)

®3)
(4)

§ ‘Technlgg

According to PMP:

H=7pT. f(z,u) — fo(z,u) (5)
aw_ o __of" opT o
dt ~ 9z = o= dx

Hamiltonian = H,

costate variables p(t) € R™.

If 3(x*,u*) — 3 p* such that:

(a) H(z*,u*,p*) > H(z",u,p") =
OH/Ou = 0 if H is differentiable w.r.t
u,

z* and p* satisfy (2) and (6),

u* satisfies (4),

(b)
(c)
(d)

the end conditions in (3) must hold.
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Optimal traffic control

Optimal traffic control problem @(t)
(continuous-time model) fet t0, (01, o)

t
J= /tof (q1(t) + g2(t))dt — min

ts
WO _ o1(0) — ar(0) () + 00 t
dq;—t(t) =ag(t) — da(t) - (1 —u(t)) +v2(t) (0,0 q[lvgg)
qi(ty) =0, g2(tg) =0 o . .
0< qi(t), 0< ga(t) erzlec?enntzlc: of non-increasing

Umin < u(t) < Umax
0 S v1 (t) S Ul,max(t)

where:
control variable u(t), state variables g1 (t), g2(%), 0 < va(t) < v2,max(?)
and artificial slack variables v1(¢) > 0, v2(t) > 0. where

V1,max (t) = max [O,dl ~u(t) — al}

V2, max (t) = max [O,dz —da - u(t) — az]

Vt, a;i(t) = a; and d;(t) = d;, i = 1,2.

§ ‘Tezhnlon
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Optimal control solution

Optimal control solution for the continuous-time model

® The Hamiltonian function, H, is formed as

RR————
(

+p1(t) - v1(t) + p2(t) - v2(t) — p2(t) - d2 — q1(t) — g2(t)
where p1(t), p2(t) satisfy
dpr _ _OH _ |

dt g
dp2 _ _0H _
dt 9q2 o
® The optimal control solution obtained by max v, ,vy H

«(t if p1(t ,
’Ul(t) — vl,ma ( ) I pl( ) > O
0 if p1(t) <O,
max .f ’
’Uz(t) — V2,ma: (t) ' pQ(t) >0
0 if p2(¢) <0,

x if
u(t) _ Uma; ' S(t) > 07
Umin if S(t) <0,

where the switching function S(t) £ _

g Technion
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Switching function

Switching function S(t)

S(t) £ pa(t) - da —pi(t) - da

dor =1 = dS(t)/dt =ds —dy <0
dy > do dde =1
S(to) >0 S(to) <0
S(t) S(t)

ty  tr t\‘i Time to t; Time
‘

e at switching point S(t;) =0,

e S(tp) <0 — no switching point,

° S(to) >0
e initial queue lengths are such that ty > t; — a single switching point,
e initial queue lengths are such that ¢ty <t¢s; — no switching point.

g Technion
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Optimal control cases

Optimal control cases

t
Umin < U(t) < Umax J = ftg (q1(t) + g2(¢))dt — min
ity T
efinitions
Q920 _ oy (1) — da(t) - (1 - u(®) + va(D)
A a A do—a
uL =g 5 um = g P R
vda () 1 dgy (8 !
;qd:()*o\ :th”<0\
— et Ve _
Necessary condition for Lod T R
. dalt) 59 dul) < podnl g
° | |
fecreﬁsmg both queue ) ‘ dq;(t) 0 ! dqj(t) o
it | t ! t
engths ‘ ! u(t)
az ur uy
—+—<1oruL<uH , ,
dy  ds Case I ! Unin ! Umax
Case I1: 3 Unnin Umax 3
I ur, < Umin < ug < Umax | |
i Case I1I: Uiy | Umax |
Il up, < Umin < Umax < UH | |
Case IV: Uy ! i Unax

I Umin < ur, < Umax < UH
IV Umin < ur, < ug < Umax

e subcases: no switching point (function of initial queue lengths).

Optimal Control for Isolated Signalized Intersections 13 /23
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Optimal control cases

Case |: up, < Upin < Ug < Umax

60 Switching line
Trajectory 1} \memaw 2
50 ® Gazis (1964):
\ a1 (t) = ax(t)
40 \ e Haddad (2010):
£ a1(t) =R - a2()
e a,0=r,0)
20
/ng
/%
5 3

15 2!
a, () [veh]

= T=d1/d2~R

Optimal Control for Isolated Signalized Intersections 14 /23
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Optimal control cases

State feedback control for Case |

60 T T

50|

40|

a, (0 [veh]
8

0 5 10 15 20 25 30
a, (0 [veh]
[max
0 if qi(t) > R-q2(t), ai(t) >0, qz2(t) >0,
0
u(t) Umin
vi(t)| = 0 if q1(t) <R-q2(t), qi(t) >0, g2(t) >0,
v2(t) 0
Umin
v max(t)| if qi(t) < R-q2(t), @(t) =0, q2(t) >0.
0

Optimal Control for Isolated Signalized Intersections 15 /23
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Numerical example

Contributions

Numerical comparison example for Case |l

my

Future research

Flow rates: al as dy do
[veh/s] 0.15 0.1 0.55 0.3
Green splits: ur, U Umin | Wmax
[-] 0.2727 | 0.6667 0.4 0.5
Initial queues: | q1(to) | g2(to)
[veh] r-15 15
Coefficient: r R
[=] 0.875 | 0.4773
@ Trajectory that switches umax to ailt)
Umin at g1 (t)/q2 (t) =r
( Gazis 1964 ),

@ Optimal trajectory that switches
Umax tO Umin at q1(¢t)/q2(t) = R
( Haddad 2010 ).

Total delay: J1 Jo
[veh - §]

W Technion
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a(t) =r-q(t)

alt) = R-a(t)
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Summary of optimal control cases

Summary of optimal control cases

¢ b CaseIV
l
Il FR Gn=M-q i
Case T i
‘
l
! .
s T | function of:
, | o relative relation between
Case ILa S B i .
and Gl w=Bn the green split bounds,
Case I1La AN § i o
' ! e initial queue lengths.
. ‘
Case 1T N !
Case IIT i
y ‘
Case La ‘\ :
and | i
Case IL.b | :
v v
Q2
M = dai/dt a1 —dj Umax

- dq2/dt|“:"max = az—da (I—umax)
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Discrete models

Queue lengths at cycle k for m;

alt) 4 Cycle k
. . (veh) : )
® at the end of red |Ight. g1(k) g2 (k) N\
Green Red ;
a1 (t2k+2) = q1(tak+1) + a1 (tart1) - g2(k) | |
qu(tar) [ >~ R i
® at the end of green light: S~ = 2 (tang)
q1 (tag 1) = max (q1(tag) + (a1 (tar) — d1(tag)) - 91(k),0)

tok tokt1 tort2

® Discrete-event Max-Plus (DMP) problem

min J
91(0),92(0),91(1),92(1),-+ ,91 (N —1),92(N—1)

subject to
a1 (tap41) = max (q1(ta) + (a1 (t2k) — d1(t2p)) - 91(k),0)
a1 (t2p42) = a1(topy1) + a1 (top41) - 92(k)
a2(top41) = a2(tay) + az(tay) - 91 (k)
a2 (tog42) = max (g2(topy1) + (a2(tag41) — d2(tag41)) - 92(k),0)
fork=0,1,2,...,N — 1,

Optimal Control for Isolated Signalized Intersections 18 /23



Introduction PMP for ISI Discrete models Contributions Future research
0000 000000000

Discrete-event models

() A
[veh]
((h,imc, q2,init)
e the “saw tooth” profile
evolution,
o two time instants: f, and #s
coincide exactly with an end of
a cycle.
TE/N
0,0 >
( / (q1,ssaq2,ss) (QI(t)7QZ,ss) ql(t)

[veh]

Contributions to discrete-event models

o two decision variables per cycle: green split and cycle length,
o relaxing simultaneous dissipation assumption,

o modeling zero-queue length periods (ZQLP’s),

o final queue lengths = steady-state queues.

§ ‘E(hnlog
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Optimal discrete formulations

modeling ZQLP
o max-plus equations: a = max(b + ¢,0) where a,b,c € R.

f(z) if f(x) >0,
0 if f(z) <0.

o piece-wise affine equations: g(z) = {

Two discrete-event problems:

1 discrete-event max-plus problem:
max-plus equations — linear inequality equations:

a>b+c

= b ,0) =
a = max(b+c,0) {aZO

2 discrete-event Piece-Wise Affine (PWA) problem:
PWA equations — mixed integer equations

e a nonlinear J: mixed-integer programming (MIP) algorithms,
e a linear J: mixed-integer linear programming (MILP) algorithms.

Optimal Control for Isolated Signalized Intersections 20 /23



Contributions

Contributions

A continuous-time model: introduction of slack-variables,

Discrete-event models: discrete-event piecewise and discrete-event
max-plus models. The models are mathematically capable to
describe ZQLP’s,

Pontryagin’s Maximum Principle: the PMP is used to solve the
optimal control problem for IS,

LP, SQP, MIP, MILP: different mathematical methods can solve
the traffic control problems,

Feedback control: the optimal control law is formulated in
feedback form as a function of current queue lengths,

Dissipation pattern: the simultaneous dissipation assumption on
the optimal solution of the queue lengths is relaxed,

Switching line: the switching line of the optimal trajectory in the
bang-bang control proposed by Gazis (1964) is adjusted.

Optimal Control for Isolated Signalized Intersections 21/



Future research

Future research

e Model extension for isolated signalized intersections,
e Optimal control for urban traffic systems,

e Hybrid dynamical models for traffic networks.
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