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A spare parts supply network
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Stochastic control model

central warehouse

stocking points i

customer locations j G;l) \\c;;) ((c;g, /w ((1/)

Model with linear dynamics and constraints
X,'(t T 1) = X,'(t) + U,'(t) = Z U,'j(t) and dJ(t ol 1) = Dj(t)
J€ECi

where vi(t) + ) ui(t) = di(t) and Y uj(t) < xi(t)
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Stochastic control model

central warehouse

stocking points i

Uil
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customer locations j

Immediate costs

g(x,u,v) = th, + ZZCUUU + ijvj
i jEC; J

inventory costs transportation costs  emergency shipments
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Simplified model

central warehouse

stocking points

customer locations (/c; ) r \)
1 L a>
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Simplified dynamics, constraints, and costs
x1(t+1) = xa(t) + ui(t) — Di(t) + w21 (t) + va(t)
where UQl(t) + Vl(t) > —Xl(t)

and cost gi(x,u,v) = hi(x1 + o1 + v1) + o101 + mMvi
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Basestock policies

Basestock policy

Si — X,'(t) if x; <S;

0 else

u,-(t) =

S; : basestock level
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Basestock policies

Basestock policy

u,-(t) _ {S, —X,'(t) if x; <S;

0 else

S; : basestock level

Case I: independent stocks without transshipment

Equivalent to single warehouse with lost sales.
Average cost per time step is

A(Si) = E[mi(D; — S;)*] + E[hi(Si — D;)"]

which is convex in S;.
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Basestock policies

Basestock policy
Si—xi(t) ifx <S5
ui(t) = xi(t) if x,
0 else

S; : basestock level

Case II: with transshipment
S ) = min Elhod® 4 hosd® ) 4 L) (s) ©)
)\( 1, 2) min [ 1X) Xy T+ mivy + mavy + Cralgy +C21U21]
st.x¥ =5 —d® 4 v 4 ul) U s (“scenarios”)
(925, d 4 O s
(s) ((s)  (s)  (s) (s) (S)>O Vs

X1 Xp Vg T,V T, Upg, Uy
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Some numerical results

’ Data H Example 1 ‘ Example 2 ‘
demand d 0 1 2 3 4 0 1 2 3 4
P[D;=d] || 02 02 02 02 02|03 025 02 015 0.1
h=1 h=1
costs c=2 c=2
m=10 m=238
] Solution H \
no transshipment S$1=5=4 5=5=3
A =4 A =438
with transshipm. 5 =45 =3 5=5=3
A* = 3.76 A*=3.75
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Basestock policies - general case

central warehouse

stocking points i

customer locations j ((cil/) r\a?)) ((ci?,) .(%D)

Case Il: with transshipment, general case
m Problem is a two-stage stochastic LP

m Recourse function is min-cost flow problem
- with 51,5, as parameter

m Average cost A(S1,...,S,) is convex.
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Lead times via state augmentation
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Lead times via state augmentation

Augmented dynamics, constraints, and costs
x1(t+1) = xq(t) + X1 (t) — Di(¢) + wo1(t) + va(t)
X1(t +1) = ui(t)
where wy1(t) + vi(t) > —xq(t)

and cost gi(x,u,v) = hy(xg + o1 + v1) + 121 + My
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Lead times via state augmentation

What is the marginal
value of an additional
stock unit?

Augmented dynamics, constraints, and costs
x1(t+1) = xq(t) + %1 (t) — D1(¢) + wo1(t) + va(t)
X(t+1) = ui(t)
where wy1(t) + vi(t) > —xq(t)

and cost gi(x,u,v) = hi(x1 + u21 + v1) + G101 + Mvy
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Parametric dynamic programming

Goal
We would like to find the differential cost function d*(x), which fulfills

A+ dY(x) = (Td")(x) := ugz;? E[g(x,u, D) + d*(f(x,u, D)]

for all x.
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Goal
We would like to find the differential cost function d*(x), which fulfills

A+ dY(x) = (Td")(x) := ugl]/;? E[g(x,u, D) + d*(f(x,u, D)]

for all x.

If dx is piecewise linear and convex, this property is preserved under
the Bellman operator T in our case.

— Jones, Baric, Morari: Multiparametric Linear Programming with Applications
to Control, 2007.

— Diehl, Bjérnberg: Robust Dynamic Programming for Min-Max Model
Predictive Control of Contrained Uncertain Systems, 2004.

— de la Pena, Bemporad, Filippi: Robust Explicit MPC Based on Approximate
Multiparametric Convex Programming, 2006.

— Lincoln, Rantzer: Relaxing Dynamic Programming, 2006.
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Randomized relative value iteration

RRVI
Initialize k := 0, set dp(x) := 0 and choose some X

Evaluate Tdi(X) and add plane to set of planes V1
Sample N points x, for each x

m Evaluate Tdk(x) and determine corresponding plane
m Add plane to Vi, if not redundant

@ Set dj,1(x) to maximum over planes
5 | Set dk+]_(X) = ak+1(X) — ak_i_]_()?)
[@ Set k := k + 1 and repeat from 2.

Marco Laumanns Distributed Control in Transportation Networks 19 May 2010 14 / 26



Stochastic Control in Inventory Networks
00000

Randomized relative value iteration

RRVI
Initialize k := 0, set dp(x) := 0 and choose some X

A Evaluate Tdk(X) and add plane to set of planes V1
Sample N points x, for each x

m Evaluate Tdk(x) and determine corresponding plane
m Add plane to Vi, if not redundant

@ Set dj,1(x) to maximum over planes
5 | Set dk+]_(X) = ak+1(X) — ak_i_]_()?)
[@ Set k := k + 1 and repeat from 2.

Lower bound

Every differential cost function d(x) yields a lower bound

A= mXin Td(x) — d(x)
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Some more numerical results

] Data H Example 2 \
demand d 0 1 2 3 4
P[D;=d] | 0.3 025 02 015 0.1
h=1
costs c=2
m=2_8
] Solution H lead time 1 \ lead time 2 ‘
no transshipment 51=5=3 5.=5=5
A =438 A* = 6.745
with transshipm. 51 =5 =3 5 =4,5=5
basestock A =375 A =498
with transshipm. A =5.066
RRVI A=4.95
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Conclusions

m Considered inventory-distribution problem (no lead time) is easy
for any number of stocking points and customers

- Basestock-policies are optimal
- Basestock levels easy to determinine

m Lead time (time delays) can make problem hard
- Value function dependent on augmented state
m Approximation of differential cost function yields

- a policy (MPC by value function approximation)
- a lower bound (to evaluate the quality of heuristics)
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Problem and geographical subdivision
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Macroscopic model
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Microscopic model

inbound train path

mm shifted (inbound) train path u

== shifted (outbound) train path v
? Inbound entrance time window

% Outbound departure time window

Junction / Switch area

Lyss - Biel

Kerzers - Neuchatel zoL Burgdorf- Olten Leg end

BNST oor MAT [] Condensation Area
anez fen —<— o= |station categories:
BNBS - BNWF WKD <> Junction / Switch area / No stops
F””""’!?:D: Te = O Commuter Train (RE) Station
Worb - Langnau Inter-City (IC), Inter-Regio (IR)
Schwarzenburg BNFI osT and RE Station
Rubigen - Thun

Belp - Thun
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Receding horizon “control” — current practise
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MPC concept for station region

{
Marco Laumanns Distributed Control in Transportation Networks 19 May 2010 24 / 26



Marco Laumanns Distributed Control in Transportation Networks 19 May 2010 24 / 26



[e]

MPC concept for station region
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MPC - IP formulation

arrival time difference departure time difference
—_—N— —_—~
Maximize — > x, - f(A”—A(p))+ > x- g(D** = D(p))
pe P (2) pe P (2)
zez zez
+ Z [z - Ve (connections kept)

(21,2)) weakly connected

+ Z Loz Yez (sequences kept)
(21,2) weakly sequenced

- Z h(F**, F(p)) - x» (platform changes)
Fr22F(p)
pEP(2),2€2
subject to Z x=1 VzeZ

— ., —Z
pEP™ meM
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Conclusions

m Offline train scheduling problem already intractable

— decomposition and simplification necessary
m MPC approach for online train control of a single station area
m Coordination an open problem, options:

- local coordination beween neighboring nodes
- global coordination via macroscopic layer
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