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A spare parts supply network
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uij
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Model with linear dynamics and constraints

xi (t + 1) = xi (t) + ui (t)−
∑
j∈Ci

uij(t) and dj(t + 1) = Dj(t)

where vj(t) +
∑
i∈Sj

uij(t) = dj(t) and
∑
j∈Ci

uij(t) ≤ xi (t)
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Stochastic control model

central warehouse

stocking points i

customer locations j

x1 x2 x3 . . .

d1 d2 d3 d4

u1 v1

u11

uij
u22 u33

Immediate costs

g(x,u, v) =
∑

i

hixi︸ ︷︷ ︸
inventory costs

+
∑

i

∑
j∈Ci

cijuij︸ ︷︷ ︸
transportation costs

+
∑

j

mjvj︸ ︷︷ ︸
emergency shipments
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d1 d2
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uij
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Simplified dynamics, constraints, and costs

x1(t + 1) = x1(t) + u1(t)− D1(t) + u21(t) + v1(t)

where u21(t) + v1(t) ≥ −x1(t)

and cost g1(x,u, v) = h1(x1 + u21 + v1) + c21u21 + m1v1
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Basestock policies
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Basestock policy

ui (t) =

{
Si − xi (t) if xi ≤ Si

0 else

Si : basestock level

x1 x2

u1 u2v1 v2

u21

u12

D1 D2

Case I: independent stocks without transshipment

Equivalent to single warehouse with lost sales.
Average cost per time step is

λ(Si ) = E[mi (Di − Si )
+] + E[hi (Si − Di )

+]

which is convex in Si .
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Si − xi (t) if xi ≤ Si

0 else

Si : basestock level
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u1 u2v1 v2

u21
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Case II: with transshipment

λ(S1,S2) = min E[h1x
(s)
1 + h2x

(s)
2 + m1v

(s)
1 + m2v

(s)
2 + c12u

(s)
12 + c21u

(s)
21 ]

s.t. x
(s)
1 = S1 − d

(s)
1 + v

(s)
1 + u

(s)
21 − u
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12 ∀s (“scenarios”)

x
(s)
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(s)
2 + v

(s)
2 + u

(s)
12 − u

(s)
21 ∀s

x
(s)
1 , x

(s)
2 , v

(s)
1 , v

(s)
2 , u

(s)
12 , u

(s)
21 ≥ 0 ∀s
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Some numerical results

Data Example 1 Example 2

demand
d

P[Di = d ]
0 1 2 3 4

0.2 0.2 0.2 0.2 0.2
0 1 2 3 4

0.3 0.25 0.2 0.15 0.1

costs
h = 1
c = 2

m = 10

h = 1
c = 2
m = 8

Solution

no transshipment S1 = S2 = 4 S1 = S2 = 3
λ∗ = 4 λ∗ = 4.8

with transshipm. S1 = 4,S2 = 3 S1 = S2 = 3
λ∗ = 3.76 λ∗ = 3.75
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Basestock policies - general case

central warehouse

stocking points i

customer locations j

x1 x2 x3 . . .

d1 d2 d3 d4

u1 v1

u11

uij
u22 u33

Case II: with transshipment, general case

Problem is a two-stage stochastic LP

Recourse function is min-cost flow problem

- with S1,S2 as parameter

Average cost λ(S1, . . . ,Sn) is convex.
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Lead times via state augmentation
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stock unit?
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Parametric dynamic programming

Goal

We would like to find the differential cost function d∗(x), which fulfills

λ∗ + d∗(x) = (Td∗)(x) := min
u∈U(x)

E [g(x,u,D) + d∗(f (x,u,D)]

for all x.

If d∗ is piecewise linear and convex, this property is preserved under
the Bellman operator T in our case.

→ Jones, Baric, Morari: Multiparametric Linear Programming with Applications
to Control, 2007.

→ Diehl, Björnberg: Robust Dynamic Programming for Min-Max Model
Predictive Control of Contrained Uncertain Systems, 2004.

→ de la Pena, Bemporad, Filippi: Robust Explicit MPC Based on Approximate
Multiparametric Convex Programming, 2006.

→ Lincoln, Rantzer: Relaxing Dynamic Programming, 2006.
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Randomized relative value iteration

RRVI

1 Initialize k := 0, set d0(x) :≡ 0 and choose some x̂

2 Evaluate Tdk(x̂) and add plane to set of planes Vk+1

3 Sample N points x , for each x

Evaluate Tdk(x) and determine corresponding plane
Add plane to Vk+1 if not redundant

4 Set d̃k+1(x) to maximum over planes

5 Set dk+1(x) := d̃k+1(x)− d̃k+1(x̂)

6 Set k := k + 1 and repeat from 2.

Lower bound

Every differential cost function d(x) yields a lower bound

λ = min
x

Td(x)− d(x)
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Some more numerical results

Data Example 2

demand
d

P[Di = d ]
0 1 2 3 4

0.3 0.25 0.2 0.15 0.1

costs
h = 1
c = 2
m = 8

Solution lead time 1 lead time 2

no transshipment S1 = S2 = 3 S1 = S2 = 5
λ∗ = 4.8 λ∗ = 6.745

with transshipm. S1 = S2 = 3 S1 = 4,S2 = 5
basestock λ∗ = 3.75 λ∗ = 4.98

with transshipm. λ = 5.066
RRVI λ = 4.95
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Conclusions

Considered inventory-distribution problem (no lead time) is easy
for any number of stocking points and customers

- Basestock-policies are optimal
- Basestock levels easy to determinine

Lead time (time delays) can make problem hard

- Value function dependent on augmented state

Approximation of differential cost function yields

- a policy (MPC by value function approximation)
- a lower bound (to evaluate the quality of heuristics)
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Problem

Find exact route and speed profile for
each train, at any time
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Problem and geographical subdivision

Find exact route and speed profile for
each train, at any time
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Macroscopic model

Periodic Event Scheduling Problem

Find passing times at critical locations under

commercial requirements (connections)

simplified dynamics (constant speed)
and safety model (headway)
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Microscopic model

Junction / Switch area

x

t

r
u

0

T

r
u

1

r
u

2
r

u

3

r
u

4

r
v

0

r
v

1

r
v

2

r
v

3

shifted (inbound) train path u

shifted (outbound) train path v

T

0

T :  Inbound entrance time window

T: Outbound departure time window

inbound train path

!

!

!

!

Marco Laumanns Distributed Control in Transportation Networks 19 May 2010 21 / 26



Stochastic Control in Inventory Networks Online Train Control in Railway Networks

1 Stochastic Control in Inventory Networks
Problem and Model
Basetock Policies as Local Heuristics
Model with Replenishment Lead Times

2 Online Train Control in Railway Networks
Multi-level approach
Online control of a station area

Marco Laumanns Distributed Control in Transportation Networks 19 May 2010 22 / 26



Stochastic Control in Inventory Networks Online Train Control in Railway Networks

Receding horizon “control” – current practise
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MPC concept for station region
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MPC – IP formulation

Maximize −
X

p∈
�
P (z)

z∈Z

xp ·

arrival time differencez }| {
f (A∗z − A(p)) +

X
p∈

�
P (z)

z∈Z

xp ·

departure time differencez }| {
g(D∗z − D(p))

+
X

(zi ,zj ) weakly connected

l czi ,zj
· y c

zi ,zj
(connections kept)

+
X

(zi ,zj ) weakly sequenced

l szi ,zj
· y s

zi ,zj
(sequences kept)

−
X

F∗z 6=F (p)
p∈P(z),z∈Z

h(F∗z , F (p)) · xp (platform changes)

subject to
X
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�
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�
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�
M

z

xp = 1, ∀z ∈ Z

X
�
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�
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x�
p
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X
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�
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q

+ y c
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Conclusions

Offline train scheduling problem already intractable

→ decomposition and simplification necessary

MPC approach for online train control of a single station area

Coordination an open problem, options:

- local coordination beween neighboring nodes
- global coordination via macroscopic layer
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