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Setup
We consider m ≥ 1 nonlinear discrete time control systems

xk(n+ 1) = f(xk(n), uk(n)), k = 1, . . . ,m

with xk(n) ∈ Xk, uk(n) ∈ Uk, Xk, Uk metric spaces

Notation: xu
k(n): open loop solution for some uk(·)

Notation: xk(n): closed loop solution for some feedback law

Goal: stabilize each subsystem while maintaining a common
state constraint

Subsystems are allowed to transmit data to each other once
per sampling period

Before we give the precise problem formulation we illustrate
the problem by a simple example
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Example: simple mobile robots in the plane
position: xk = (xk,1, xk,2) ∈ [−1, 1]2

velocity : uk = (uk,1, uk,2) ∈ [−1
4
, 1

4
]2

sampling time: T > 0

xk,1(n+ 1) = xk,1(n) + Tuk,1(n)

xk,2(n+ 1) = xk,2(n) + Tuk,2(n)
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Given: Initial values xk(0) (•) and equilibria x?
k (×)

Goal: find feedback controllers which

control each robot from xk(0) to x?
k (stabilization)

while staying in [−1, 1]2 and avoiding collisions
(state constraints)
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Formal problem formulation
Goal: given equilibria x?

k ∈ Xk and a state constraint set

X ⊂ X1 ×X2 × . . .×Xm

find feedback controllers Fk : Xk × Yk → Uk such that

x?
k is asymptotically stable for the k-th subsystem

xk(n+ 1) = f(xk(n), Fk(xk(n), yk(n)))

(x1(0), . . . , xm(0)) ∈ X implies (x1(n), . . . , xm(n)) ∈ X
for all n ≥ 0

Here yk(n) ∈ Yk is data transmitted from the other subsystems

Example: state constraints for mobile robots

X = {(x1, . . . , xm) ∈ [−1, 1]2m | ‖xk − xl‖ ≥ δ for k 6= l}

Idea: use model predictive control (MPC)

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 4
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Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 4



Formal problem formulation
Goal: given equilibria x?

k ∈ Xk and a state constraint set

X ⊂ X1 ×X2 × . . .×Xm

find feedback controllers Fk : Xk × Yk → Uk such that

x?
k is asymptotically stable for the k-th subsystem

xk(n+ 1) = f(xk(n), Fk(xk(n), yk(n)))

(x1(0), . . . , xm(0)) ∈ X implies (x1(n), . . . , xm(n)) ∈ X
for all n ≥ 0

Here yk(n) ∈ Yk is data transmitted from the other subsystems

Example: state constraints for mobile robots

X = {(x1, . . . , xm) ∈ [−1, 1]2m | ‖xk − xl‖ ≥ δ for k 6= l}

Idea: use model predictive control (MPC)
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The basic MPC concept
We recall basic MPC concepts for one subsystem, i.e., m = 1.

At each time instant n solve for the current state x = x(n)

minimize JN(x, u) =
N−1∑
n=0

`(xu(n), u(n)), xu(0) = x, xu(n) ∈ X

where ` penalizes the distance to the equilibrium x?

 optimal trajectory xopt(0), . . . , xopt(N − 1)

 with optimal control uopt(0), . . . , uopt(N − 1)

 MPC feedback law F (x(n)) := uopt(0)

 closed loop

x(n+ 1) = f(x(n), F (x(n))) = f(xopt(0), uopt(0)) = xopt(1)

How can we guarantee asymptotic stability of the closed loop?

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 5
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Stabilizing terminal constraints

At time n solve for the current state x = x(n)

minimize JN(x, u) =
N−1∑
n=0

`(xu(n), u(n)), xu(n) ∈ X

Stability can be guaranteed by adding the terminal constraint

xu(N) = x?

(point constraint, [Keerthi/Gilbert ’88, . . . ])

or variants like xu(N) ∈ N (x?) plus terminal costs

(regional constraint, [Chen/Allgöwer ’98, . . . ])

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 6
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Stabilizing terminal constraints
Typical stability result with stabilizing terminal constraints:

Theorem: Assume that each x ∈ X is feasible, i.e., there exists
xu(·) with xu(0) = x, xu(N) satisfying the terminal
constraints and

xu(n) ∈ X, n = 1, . . . , N − 1.

Then F stabilizes the system maintaining the state constraints X

In the robot problem with one robot and a static obstacle, in
the simulation with point terminal constraint this is satisfied
for N = 18

Regional terminal constraints may allow for smaller N but the
construction of terminal costs becomes difficult if the terminal
region contains an obstacle

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 7
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No stabilizing terminal constraints

Without stabilizing terminal constraints, stability can be
guaranteed under conditions like, e.g.,

rank conditions [Alamir/Bornard ’95]

controllability conditions [Jadbabaie/Hauser ’05, Gr. ’09,

←
Gr./Pannek/Seehafer/Worthmann ’10]

detectability conditions [Grimm/Messina/Teel/Tuna ’05ff]

relaxed dynamic programming conditions [Gr./Rantzer ’08]

. . .

and sufficiently large optimization horizon N

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 8



No stabilizing terminal constraints

Without stabilizing terminal constraints, stability can be
guaranteed under conditions like, e.g.,

rank conditions [Alamir/Bornard ’95]

controllability conditions [Jadbabaie/Hauser ’05, Gr. ’09,

←
Gr./Pannek/Seehafer/Worthmann ’10]

detectability conditions [Grimm/Messina/Teel/Tuna ’05ff]

relaxed dynamic programming conditions [Gr./Rantzer ’08]

. . .

and sufficiently large optimization horizon N
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No stabilizing terminal constraints
Typical stability result without stabilizing terminal constraints:

Theorem: Assume that each x ∈ X is feasibly exponentially
controllable through `, i.e., there exists u(·) with xu(0) = x,

xu(n) ∈ X and `(xu(n), u(n)) ≤ Cσn min
u
`(x, u)

for n = 0, . . . , N − 1 with C > 0, σ ∈ (0, 1) independent of x.

Then F stabilizes the system under the state constraints X if

α = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
> 0, where γi =

i−1∑
k=0

Cσk

Note: α→ 1 as N →∞
In the one-robot problem with `(x, u) = ‖x− x?‖2 + ‖u‖2/10,
in simulations stability is obtained for N = 3

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 9
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Common idea in the proofs
Both with and without stabilizing terminal constraints, the
stability proof relies on establishing the inequality

VN(x(n+ 1)) < VN(x(n))

for the optimal value function VN(x) = infu∈U JN(x, u) in a
suitable uniform way

 VN is a Lyapunov function

To this end, the proofs use the tail

xopt(1), . . . , xopt(N)

of the optimal trajectory at time n with xopt(0) = x(n) to
construct feasible trajectories at time n+ 1 for initial value
x(n+ 1) = xopt(1)  upper bound for VN(x(n+ 1))

 crucial for extension to the distributed context:
xopt

k (1), . . . , xopt
k (N) for subsystem xk must remain feasible

when the other subsystems xl, l 6= k, update their prediction

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 10
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A hierarchical distributed MPC scheme
[Richards/How, ACC ’04, IJC ’07] propose the following
hierarchical MPC scheme with terminal constraints:

At each sampling instant n:

for k from 1 to m

subsystem k computes (and transmits) its optimal
prediction xopt,n

k (0), . . . , xopt,n
k (N) taking into account

its own position xopt,n
k (0) = xk(n) at time n and

• the predictions xopt,n
l for l = 1, . . . , k − 1

• the predictions xopt,n−1
p for p = k + 1, . . . ,m

such that for j = 0, . . . , N − 1:

(xopt,n
1 (j), . . . , xopt,n

k (j), xopt,n−1
k+1 (j + 1), . . . , xopt,n−1

m (j + 1)) ∈ X

end of k-loop

all systems apply the resulting feedback control value

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 11
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A hierarchical distributed MPC scheme

What is Yk in this scheme?

The feedback Fk : Xk × Yk → Uk depends on xk ∈ Xk and

blabla

 Yk = XN+1
1 × . . .×XN+1

k−1 ×X
N+1
k+1 × . . .×XN+1

m

How is the scheme initialized?

At time n = 0 we start with arbitrary, i.e., not necessarily
optimal feasible solutions. These can be found by optimization
or any other method

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 12
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Stability theorem with terminal constraints
Theorem [Richards/How]: Assume that for the initial values
xk(0), k = 1, . . . ,m, we can find feasible solutions, i.e., xu

k(·)
with xu

k(0) = xk(0), xu
k(N) satisfying the terminal constraints

and
(xu

1(n), . . . , xu
m(n)) ∈ X, n = 0, . . . , N − 1

Then, initializing the hierarchical scheme at n = 0 with the
corresponding uk(·) and Fk(xk(0)) := uk(0), the resulting
distributed MPC feedback laws Fk feasibly stabilize all
subsystems

For the mobile robot example with 4 robots, in the simulation
we need N = 18 to satisfy the initial feasibility assumption

Observations:
rather long horizons N needed (as for one robot)
all “conflicts” are resolved in the initialization phase

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 13
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Removing the terminal constraints

The proof of the preceding theorem uses the fact that due to
the hierarchical structure each prediction remains feasible
when the other subsystems update their predictions

 usual argument in the stability proof applies

Since our controllability based stability proof without terminal
constraints uses a similar argument, removal of the terminal
constraints should be possible

Question: What is a suitable “distributed” controllability
condition?

For defining such a condition, we need some more notation

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 14
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Partial state constraints
Recall: the state space of the overall system is

X = X1 ×X2 × . . .×Xm

For an index set I = {i1, . . . , ip} ⊆M := {1, . . . ,m} define
the partial state space

XI := Xi1 ×Xi2 × . . .×Xip

Elements of XI are called partial states and denoted by

xI = (xi1 , . . . , xip)

The partial state constraint set is defined as

XI := {xI ∈ XI | there is xM\I ∈ XM\I with (x1, . . . , xm) ∈ X}

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 15
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Distributed controllability
In words: “no matter what the others intend to do, the k-th
subsystem can find a feasible way towards its equilibrium,
provided it knows what the others intend to do”

Formally: at each time n ≥ 0, denote the other subsystems’
predictions available to the k-th subsystem by xopt

Ij
(j), where

Ij ⊂M with k 6∈ Ij and the time arguments are already
appropriately shifted.
Then we assume that there are C > 0, σ ∈ (0, 1) such that for
each j = 0, . . . , N − 2 there is uk(·) with

(xopt
Ij

(j + j′), xu
k(j
′)) ∈ XIj+j′∪{k}

and
`k(x

u
k(j
′), uk(j

′)) ≤ Cσj′
min

u
`k(x

u
k(0), u)

for j′ = 0, . . . , N − j − 1 where xu
k(0) = xopt,n−1

k (j + 1).
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Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 16



Stability theorem without terminal constraints

Assume that the distributed controllability assumption holds.

Then the Fk stabilize all subsystems under the state
constraints X if

α = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
> 0, where γi =

i−1∑
k=0

Cσk

Note: again α→ 1 as N →∞
In the 4 robot problem with `k(x, u) = ‖x− x?

k‖2 + ‖u‖2/10,
in simulations stability is obtained for N = 5 up to N = 8,
depending on the initial configuration

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 17



Stability theorem without terminal constraints

Assume that the distributed controllability assumption holds.

Then the Fk stabilize all subsystems under the state
constraints X if

α = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
> 0, where γi =

i−1∑
k=0

Cσk

Note: again α→ 1 as N →∞

In the 4 robot problem with `k(x, u) = ‖x− x?
k‖2 + ‖u‖2/10,

in simulations stability is obtained for N = 5 up to N = 8,
depending on the initial configuration
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Conclusion and discussion

The hierarchical scheme can be extended to NMPC
without stabilizing terminal constraints

This may lead to considerably shorter optimization
horizons N

Conflicts are resolved when they are detected, not
necessarily in the initialization phase

However, there are many open questions regarding both
the controllability assumption and the design of the
scheme. Some of these will be discussed on the remaining
three slides — and maybe during and after this workshop

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 18
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Discussion: distributed controllability

The distributed controllability assumption is defined
implicitly via the a priori unknown predictions
 difficult to check

a sufficient condition is that controllability holds for all
possible trajectories — this is easier to check but very
restrictive

In the robot example, this sufficient condition holds if m
is relatively small and there are no encounters at the
boundary of the state space

However, even for large m, in simulations the scheme
works without problems. A possible explanation is given
by the following scenario.

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 19
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Discussion: distributed controllability
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bottleneck

Even for large m, controllability may still be satisfied once
(most of) the other subsystems are close to their equilibria
 application of small gain type arguments possible?

In the bottleneck case, cooperation instead of simply
avoiding each other will be needed. Can we tell
self-resolvable from unresolvable deadlocks?
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Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 20



Discussion: distributed controllability

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

large m

bottleneck

Even for large m, controllability may still be satisfied once
(most of) the other subsystems are close to their equilibria
 application of small gain type arguments possible?

In the bottleneck case, cooperation instead of simply
avoiding each other will be needed. Can we tell
self-resolvable from unresolvable deadlocks?

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 20



Discussion: distributed controllability

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

large m

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

bottleneck

Even for large m, controllability may still be satisfied once
(most of) the other subsystems are close to their equilibria
 application of small gain type arguments possible?

In the bottleneck case, cooperation instead of simply
avoiding each other will be needed. Can we tell
self-resolvable from unresolvable deadlocks?
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Discussion: hierarchical scheme

Main drawback of the scheme: optimization must be
performed sequentially in each sampling instant

 inefficient for large m
(although the overall computational complexity is lower
than for centralized MPC, cf. [Richards/How ’07])

Simple (and provably stable) relaxation: only one
subsystem optimizes at a time
 more efficient but still scales badly with growing m

Is there a chance to obtain a truly parallel optimization
with provable stability and feasibility???

Lars Grüne, A distributed NMPC scheme without stabilizing terminal constraints, p. 21
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