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Two REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

VEHICLE DISPATCHING FOR ADAC

Team:
System:

Task:

Goals:
Before Project:

Project Goal:

X, -
Fa¥A

Sven O. Krumke,

Benjamin Hiller

Luis Miguel Torres

~1,700 service units of ADAC
~5,000 service contractors

5 help centers

requests — units/contractors
units — tours

productivity & service quality
geographic clustering
manual dispatching
automatic decision support
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Two REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

YELLOW ANGELS CONTROL CYCLE

/[ Unitidle
Choose Next Request

Yellow—=Angles Control | Serve Request

Move Idle Unit to
Next Request
\»[ Unit En-Route |

A
Fa'A
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Two REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

delta_replan_rescheduler (undelayed)

ELEVATOR GROUP CONTROL FOR HERLITZ PR =

10 10

Team: Sven O. Krumke, : :

Philipp Friese : :

System: pallet transportation Herlitz PBS AG, L :

Falkensee near Berlin : :

Task: requests — elevators 1 1- 1
elevators — schedules 0 8
Goals: productivity & service quality NAgﬂwd : e —
Before Project: choice between: Maxflow: 45 :— :z
FIRSTFIT+FIFO or Agwait 10 | i
FIRSTFIT+NEARESTNEIGHBOR Al L N

sqrt avg sqr wait: 12 JJ
0

Empty floors: 427 |

512

Project Goal: efficient control with manageble
deferment
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Two REAL-WORLD DYNAMIC OPTIMIZATION PROBLEMS

THE ELEVATOR CONTROL CYCLE

[ Elevator Empty )

Choose Next Request

Elevator—-Control

Serve Request

Move Elevator
fo Next Request

\> [Elevqtor Occupied)

A
Fa'A
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE REOPTIMIZATION POLICY FOR THE ADAC PROBLEM

/—[ Unitidle )

Choose Next Request in Dispatch
as Next Request

* repl an Serve Request
at Each New Request:

Move Unit to Find Cost—Optimal Dispatch

Next Request for all Known Requests

\»[ Unit En-Route |

X,
Fa'A
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

Model with
tour variables
for units and partners.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

~
% 8o

) Vehicle 1 goes along Tour T.

fh
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

Contractor 1 is assigned
Requests S.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

Feasible Solution:
partition of requests
into tours.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

Vrequests v (Parfifioning Requests)

Yunits 1 (Partitioning Units)

xT €{0,1} VI €T (Binary Variables)
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ADAC

TeT
Z a, X7 = | Vrequests v
TeT
Z XT = Yunits u
Tely

xr€{0,1} VTeT

(Partitioning Requests)
(Partitioning Units)

(Binary Variables)

(No) Problem:

A
Fa'A

In practice ~100.000.000.000 variables = Dynamic Column Generation
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

\V,Y )
AN [l e




ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

The transport graph for one elevator.

YV .
AN [l e




ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

Some requests.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

Their time stamps.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

The position of the elevator.
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

Each request can be seen as a node.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

07:45
® 5 O
o © (4,6)

5,1

Each request can be seen as a node.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

The elevator is a special node.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

The connecting moves between requests ...
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

. dare arcs...
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

. Whose weights are empty moves.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

A feasible dispatch
is a tour through all nodes
starting at the elevator’s node
with precedence conditions on each floor.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

We do not show the arcs anymore
since they are implicitly given.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

If there is another elevator ...
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

07:45
08:15 ‘/‘

QO » (4.6)

5 (5,1) ... then a feasible solution is a

partitioning
of requests into tours
with precedence constraints
on each floor.
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

x(R)=1 07:45
08:15 ‘/Q

QO » (4.6)

5 (5,1)

A tour-variable model contains a variable for
each feasible tour of a server.
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THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

x(R)=1 07:45
08:15 ‘/Q

QO » (4.6)

5 (5,1)

A tour-variable model contains a variable for
each feasible tour of a server.

(No) Problem:
astronomic number of variables
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

x(R)=1 07:45
08:15 ‘/Q

QO » (4.6)

A tour-variable model contains a variable for

5 (5,1)

each feasible tour of a server.
(No) Problem:
astronomic number of variables
Solution:
dynamic column generation
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE ILP REOPTIMIZATION MODEL FOR ELEVATOR GROUPS

X(V_\ 07:45
08:15
‘/‘ A tour-variable model contains a variable for

QO » (4.6)

each feasible tour of a server.
(No) Problem:
astronomic number of variables

5 (5,1)

Solution:
dynamic column generation
Precedence Constraints:
Good for us!
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE INFINITE DEFERMENT PROBLEM
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE INFINITE DEFERMENT PROBLEM

e Depending on the objective, individual requests maybe deferred arbitrarily.
e Infinite deferment unwanted even if original objective does not penalize this.
e Example: Minimize empty moves, minimize total flow time, ...
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

THE INFINITE DEFERMENT PROBLEM

e Depending on the objective, individual requests maybe deferred arbitrarily.
e Infinite deferment unwanted even if original objective does not penalize this.
e Example: Minimize empty moves, minimize total flow time, ...

Goal:
Minimize (expected) objective function value so that
the maximal flow time of each request is bounded by a constant

(constant may depend on the system load but not on the instance)
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ILP REOPTIMIZATION POLICIES AND INFINITE-DEFERMENT

INSECURE INFORMATION ASPECT

Observation:
A currently good-looking decision
— i.p. when applied repeatedly —
may prove bad in the long run because of

insecure or even no information about future requests.

Classical approaches to cope with insecure information about future requests:

With Stochastic Info: Stochastic (Dynamic) Programming (Expected Performance)
Without Stochastic Info: Competitive Analysis (Worst-Case Performance)
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

STOCHASTIC DYNAMIC PROGRAMMING/MARKOV DECISON PROCESSES

Classical computational methods rely on computing
the optimal cost function for all states.

Problem:
e Stochastic information about future requests required.

o = (m — 1)™kme states for e elevators, m floors, and k slots.

e=1,m=8 k=2: > 265, 863,444,556, 808 states.
e=5m=38k=1: > 188, 900,999, 168 states
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

COMPETITIVE ANALYSIS: GOOD NEWS FOR A SINGLE ELEVATOR
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

COMPETITIVE ANALYSIS: GOOD NEWS FOR A SINGLE ELEVATOR

Theorem [Ascheuer, Krumke, R. 2000]:

e REPLAN is 2.5-competitive for makespan minimization.

e There is a 2-competitive online-algorithm for makespan minimization.
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

SINGLE ELEVATOR CONTROL: REPLAN

\

Move Elevator
fo Next Request

X,
Fa'A

/[ Elevator Empty ]

Choose Next Request in Schedule
as Next Request

\—> [Elevqtor Occupied]

Serve Request

replan
at Each New Request:

Find Shortest Schedule
for all Known Requests
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

COMPETITIVE ANALYSIS: BAD NEWS
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

COMPETITIVE ANALYSIS: BAD NEWS

Observations:
Minimizing the long-term makespan for an elevator group/the ADAC fleet is
absolutely useless.

AVAY, )
AN [l e




WHY CLASSICAL EVALUATION METHODS FAIL HERE

COMPETITIVE ANALYSIS: BAD NEWS

Observations:
Minimizing the long-term makespan for an elevator group/the ADAC fleet is
absolutely useless.

There is no competitive online-algorithm

for max./avg. flow/waiting time minimization
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

COMPETITIVE ANALYSIS: BAD NEWS

Observations:
Minimizing the long-term makespan for an elevator group/the ADAC fleet is
absolutely useless.

There is no competitive online-algorithm

for max./avg. flow/waiting time minimization

Problem: The task doesn’t go away!
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

AILTERNATIVE PERFORMANCE MEASURE: GOOD NEWS
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

AILTERNATIVE PERFORMANCE MEASURE: GOOD NEWS

requests A-reasonable
Sl
requests presented in time 0
can be served in time at most 6 whenever 6 > A.
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

AILTERNATIVE PERFORMANCE MEASURE: GOOD NEWS

requests A-reasonable
Bl
requests presented in time 0
can be served in time at most 6 whenever 6 > A.

Theorem [Hauptmeier, Krumke, R. 2000]:
Under A-reasonable load, the
max./avg. flow time of IGNORE is at most 2A;
for REPLAN it is unbounded.

\V,V )
AN [l e




WHY CLASSICAL EVALUATION METHODS FAIL HERE

SINGLE ELEVATOR CONTROL: IGNORE

\

Move Elevator
fo Next Request

X, -
Fa'A

/[ Elevator Empty ]

Choose Next Request in Schedule
as Next Request

\—> [Elevqtor Occupied]

Serve Request

ighore
when Schedule Done:
Find Shortest Schedule
for all Known Requests
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

ALTERNATIVE PERFORMANCE MEASURE: BAD NEWS

\V,Y )
AN [l e




WHY CLASSICAL EVALUATION METHODS FAIL HERE

ALTERNATIVE PERFORMANCE MEASURE: BAD NEWS

Simulation Experiments:
For the more complicated objectives from practice,

IGNORE does not produce good objective function values on average.
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WHY CLASSICAL EVALUATION METHODS FAIL HERE

ALTERNATIVE PERFORMANCE MEASURE: BAD NEWS

Simulation Experiments:
For the more complicated objectives from practice,

IGNORE does not produce good objective function values on average.

In practice: Reoptimization w.r.t. a tweaked objective function
E.g.: Adding weighted quadratic waiting time penalties works well
However: No theoretical guarantees.
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How TO OBTAIN PERFORMANCE GUARANTEES

FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time © > 0 known.
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How TO OBTAIN PERFORMANCE GUARANTEES

FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time © > 0 known.

Original Reoptimization ILP:
7T [7..]: set of feasible tours [for server u]
(according to original model)

Z ayTXT = 1 Vrequests v (Partitioning Requests)
TeT
> xr= Vservers u (Partitioning Servers)
TeT,
xt €1{0,1} VT € T (Binary Variables)

YV .
AN [l e




How TO OBTAIN PERFORMANCE GUARANTEES

FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time © > 0 known.

FC-Reoptimization ILP:
7T [7.]: set of feasible tours [for server u]
with all flow times < @

Te?
D ayxr =1 Vrequests v (Partitioning Requests)
TeT

> xr= Vservers u (Partitioning Servers)

xt €{0,1} vT e T (Binary Variables)

YV .
AN [l e




How TO OBTAIN PERFORMANCE GUARANTEES

FC-REOPTIMIZATION (FLOW-TIME CONSTRAINED)

Assumption: achievable worst-case maximal flow time © > 0 known.

FC-Reoptimization ILP:
7T [7.]: set of feasible tours [for server u]
with all flow times < ©

Z ayxy = 1 Vrequests v (Partitioning Requests)
TeF
> xr= Vservers u (Partitioning Servers)
TeT,
xt € {0, 1} VT e T (Binary Variables)

Is there a feasible solution at all times?
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How TO OBTAIN PERFORMANCE GUARANTEES

DOUBLING FOR FC-REOPTIMIZATION

e If at any time there is no feasible solution: © « 20.
e Always feasible (whenever the original model is)
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How TO OBTAIN PERFORMANCE GUARANTEES

DOUBLING FOR FC-REOPTIMIZATION

e If at any time there is no feasible solution: © « 20.
e Always feasible (whenever the original model is)

Open Questions:
Is there a guarantee for the maximal flow time obtained?

Is there a guarantee for the original objective function value?
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How TO OBTAIN PERFORMANCE GUARANTEES

FMC-REOPTIMIZATION (FLOW-TIME AND MAKESPAN CONSTRAINED)

Stronger assumption: the request set is A-reasonable.
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How TO OBTAIN PERFORMANCE GUARANTEES

FMC-REOPTIMIZATION (FLOW-TIME AND MAKESPAN CONSTRAINED)

Stronger assumption: the request set is /A-reasonable.

FMC-Reoptimization ILP:
7T [7.]: set of feasible tours [for server u]
with all flow times < 2A and makespan < A

TeT
Z ayrxt = 1 Vrequests v (Partitioning Requests)
TeT
> xr= Vservers u (Partitioning Servers)
TeT,

xT € 10,1} VT e T (Binary Variables)
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How TO OBTAIN PERFORMANCE GUARANTEES

FMC-REOPTIMIZATION (FLOW-TIME AND MAKESPAN CONSTRAINED)

Stronger assumption: the request set is /A-reasonable.

FMC-Reoptimization ILP:
T [7.]: set of feasible tours [for server u]
with all flow times < 2A and makespan < A

TeT
Z ayxy = 1 Vrequests v (Partitioning Requests)
TeT
Z XT = Vservers 1 (Partitioning Servers)
TeT,
xt € {0, 1} VT e T (Binary Variables)

Is there a feasible solution at all times?
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How TO OBTAIN PERFORMANCE GUARANTEES

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...
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REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...
e ... continue with old dispatch
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How TO OBTAIN PERFORMANCE GUARANTEES

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...
e ... continue with old dispatch
e ... buffer the new requests
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How TO OBTAIN PERFORMANCE GUARANTEES

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...

e ... continue with old dispatch
e ... buffer the new requests
e ... when the current dispatch is finished, compute new dispatch (now feasible!)
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How TO OBTAIN PERFORMANCE GUARANTEES

REOPTIMIZATION ADMISSION CONTROL (RAC)

Whenever there is no feasible new solution, ...

e ... continue with old dispatch
e ... buffer the new requests
e ... when the current dispatch is finished, compute new dispatch (now feasible!)

Theorem:
Under A-reasonable load, FMC-Reoptimization with RAC achieves a
maximal flow time of 2A,
no matter what the original reoptimization problem is

(and this is best possible).
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How TO OBTAIN PERFORMANCE GUARANTEES

HOW ABOUT THE EXPECTED ORIGINAL OBJECTIVE FUNCTION VALUE?

Simulation Experiments for Elevator Group Control:
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HOW ABOUT THE EXPECTED ORIGINAL OBJECTIVE FUNCTION VALUE?

Simulation Experiments for Elevator Group Control:
e Unconstrained reoptimization is best w.r.t. original objective.
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HOW ABOUT THE EXPECTED ORIGINAL OBJECTIVE FUNCTION VALUE?

Simulation Experiments for Elevator Group Control:
e Unconstrained reoptimization is best w.r.t. original objective.
e Flow time constrained reoptimization is next.
e Only slightly worse: FMC-Reoptimization with RAC
e Everything else we tested: much worse.
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How TO OBTAIN PERFORMANCE GUARANTEES

HOW ABOUT THE EXPECTED ORIGINAL OBJECTIVE FUNCTION VALUE?

Simulation Experiments for Elevator Group Control:
e Unconstrained reoptimization is best w.r.t. original objective.
e Flow time constrained reoptimization is next.
e Only slightly worse: FMC-Reoptimization with RAC
e Everything else we tested: much worse.

Work in Progress:
Theoretical guarantees or computational bounds for original objective

(at least for special cases).
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How TO OBTAIN PERFORMANCE GUARANTEES

WHEN A IS UNKNOWN

e /A can be estimated by makespan computations (under-estimation)
— better flow time guarantee

e /A can be estimated by doubling (over-estimation)
— better original objective on average
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SUMMARY AND REMARKS
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Reoptimization — best observed long-term objective on average
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SUMMARY AND REMARKS

Summary:
Reoptimization — best observed long-term objective on average
Infinite deferment — bounded flow time required

No guarantees for FC-Reoptimization — FMC-Reoptimization with RAC

e Dynamic column generation models — FMC easy to implement
e FMC can be relaxed with o« > 1:
flow time < 2o/ & makespan < «/A = maximal flow time < 2aA
e /A — capacity planning
e /A — system admission control
e New sparse LP methods for MDP — computational guarantees
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THE END

Thank you!

A
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