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Multiplexed Model Predictive Control (MMPC)
MPC increasingly used for fast systems.
Reduce complexity of optimization problem.

Various distributed schemes proposed

— but all with synchronous control updates.

MMPC updates 1 input at a time (or subset of inputs).

Do something now better than Do optimal thing later?

Motivation: Speed, Scaling with number of inputs.
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Multiplexed MPC — multi-input systems

Sequential updates of control inputs

Plant inputs (MV's) Plant inputs (MV's)
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Left: Conventional MPC, Right: Multiplexed MPC
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Assumptions

Plant has m inputs. Update cycle period is T'.

Only one input updated at each time step (at time kT'/m),

In sequence.

Optimise only one input over future horizon at each step.

Can be thought of as m controllers.
Measurements of state vector are made at intervals of T'/m.

Current state xp is known when deciding the update of each

input. x s known to each controller.

N = (N, — 1)m + 1, where N, is the number of moves to be

optimized per input channel.
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Update one input at a time

Plant: If only one input is updated at each k then

m
Th41 Az + E Bjuj,k
J=1

Az + By k)t

where

o(k)=(k mod m)+1
is a periodic switching function: o(k +m) = o(k)

So multi-input LTI plant looks like periodic single-input plant.
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Periodic Invariance
o Assume Upyn—1 = —K ) Tr+n-1 (beyond horizon).

e K, () stabilises the periodic system.

o (X I(Ka(k))) is ‘periodically invariant’ sequence of sets:

T € X[(Ka(k)) and — Ka(k)iljk < Ua(k) =
(A= Bo)Ko))xr € X1(Kort1))
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What will the non-optimised inputs do?
Controller 7 decides future sequence of j’th input only.
Other inputs are treated as known disturbances.

Assume that controller 7 knows the future plans of the other

controllers, and assumes gy (1) k+i = — Ko (k) Trti beyond the

planning horizon.
What will the optimised inputs do?
Either remain fixed until the next optimisation,

Or varies as Ug (k) k+i = — Ko (k) Thti-
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Optimisation problem: Basic MMPC

. e N—1 ~
Minimise  Jy, = For)(@rqnir) + 22500 (l1zararlly + [Teazl?)

wrt Uktilk, (1=0,m,2m,...,N —1)

s.t. Uktilk € Upgiy, (@=0,...,N —1)
Trrik €X, (2=1,...,N)
TNk € X1(Kok))
— Ko+ M) ThNE € Usen)
Thtivi|k = ATppik + Bo (ki) Uktilk

Uptilk = Ukpilk—15 (E#0,m, ..., N —1).

Note: F, (k) (Tr+nik) = 0 is a terminal cost.
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Basic MMPC Algorithm

. Initialise by solving the optimisation problem, but

optimising over all the variables Uy, =0,1,..., N — 1.

. Apply control move g ) 1 = Up|k

. Store planned moves Uy, k-

. Pause for one time step, increment k,

obtain new measurement xy.
. Solve the optimisation problem.

. Go to step 2.

Implicit assumption: NN is large enough.
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Stability Theorem

MMPC, obtained by implementing the basic MMPC Algorithm, gives
closed-loop stability if the problems are well-posed, and if the set of
terminal costs {F,(-)} satisfies

Foi([A= By K iz) + ||z|2 + || Kgez||? < Fo(z) for o=1,...,m.

where o7 = (0 mod m) + 1, namely the cyclical successor value to o.

Standard MPC' proof, using the value function

as a Lyapunov function.
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Robust MMPC

Suppose that

Tht1 = Az + Z BjAuj’k + Fwy,.

J=1

o w; satisifies wi € W Vk and VW is a known, bounded set

containing 0.

e w; is not measured — but can be estimated with 1-step delay.
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Correct for disturbances, Tighten constraints

/&k—i—ﬂk—l—l — /&Z—i—N—Hk —|— Mi_l,a(k_|_1)Ewk fOI' ’I, — 1, e ooy N — 1,

Xit1,0(k) = Xi,o(k+1) ~ Li o+ EW with Xy ;) = X,

Ui o) = Ui—1,0(k+1) ~ M1 o(e+1) EWVW With Uy o) = Ug(ry,
Livi o) = AL; o(k) + Bo (ki) Mi o) With Lo o) = 1.

M; -y and K,y are chosen off-line.

Terminal sets have robust invariance property,

Modify the constraints in the optimisation problem.
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Robust MMPC Theorem

If the system is controlled using the Robust MMPC algorithm and

the initial optimisation at time k = kg is feasible, and zy, € X, then:

1. the optimisation remains feasible, and

2. the constraints z;, € X and u, € Uy are satisfied for k£ > kg and
for all admissible disturbances.

Note:
e Feasibility = stability.

e Tightening constraints reduces the chances of initial feasibility.

13
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Applications and Examples

e /-PCR temperature control (2" regions). Interactions will

increase and time constants decrease as n increases.

e A-7A Corsair II longitudinal flight dynamics, with 2 inputs and

input disturbances. 25% better performance, 4x speedup.

e Air-traffic management, with stochastic wind.

14
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Air-traffic: En-route conflict resolution
Coupling through constraints only — separation rules.
Non-convex constraints. Stochastic wind disturbances.
SESAR ‘A3’ concept: No ground ATC assistance.

Assume System-Wide Information Management (SWIM)

available.

Treat each aircraft (agent) as an ‘input’.

Initial solution available from Reference Business Trajectory.

Non-quadratic costs, finite duration (cf. Richards and How).

Theorem still holds, gives guaranteed completion.
Effective solutions for up to 6 aircraft, using CPLEX.

Obvious protocol in case of comms failure.
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Conclusions
Multiplexed MPC updates one input at a time.

Do something sooner can be better than

Do optimal thing later.
Basic and robust versions.

Theoretical guarantees available.

Generalisations: Unequal intervals; Groups of inputs;
‘Channel-hopping’ MPC.
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