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Queueing Systems

Queueing systems provide a stochastic framework for the modelling
of logistic systems
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Queueing Systems
Consider a set of servers which are able to treat different classes of
jobs.
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Queueing Systems

Without loss of generality each class only receives service at one
given server. Unserved jobs wait in a queue.
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Queueing Systems
In open systems jobs arrive from the outside according to some
stochastic process.
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Queueing Systems
After service jobs leave the network or with a certain probability
they go to another station to receive service there.
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Queueing Systems - The Maths

Classes k = 1, . . . ,K .

Interarrival times: ξk(n), n = 0, 1, 2, . . . i.i.d. E(ξk(0)) <∞

Service times: ηk(n), n = 0, 1, 2, . . . i.i.d. E(µk(0)) <∞

routing matrix P = (pij),
pij - probability that job of class i becomes a job of class j
Assumption: r(P) < 1.
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Queueing Systems - Balance Equations
Classes k = 1, . . . ,K
Interarrival times: ξk(n), n = 0, 1, 2, . . . i.i.d. E(ξk(0)) <∞
Service times: ηk(n), n = 0, 1, 2, . . . i.i.d. E(ηk(0)) <∞
routing matrix P = (pij), pij - probability that job of class i
becomes a job of class j
Assumption: r(P) < 1.

Q(t) = Q(0) + A(t) + PTS(t)− S(t)

with

Aj(t) = max

{
n |

n∑
m=0

ξk(m) ≤ t

}
S(t) is the service process - depends on the service discipline.
The state space X is very often countable, but also depends on the
service discipline.
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Stability of Queueing Systems

Definition A queueing system is called stable if it is Harris
recurrent.

Technicalities aside, Harris recurrence means that there is an
attractive invariant measure π for the Markov process.
Here invariant means that for all t > 0 and all measurable sets A

π(A) =

∫
X

Pt(x ,A)π(dx) ,

where Pt(x ,B) is the probability to go from x to the set B in time
t.
In the long run, the probability of being in a set X is π(X ).
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Queueing Systems - Fluid Limits
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Queueing Systems - Fluid Limits
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Metatheorem (Rybko/Stolyar 1992, Dai 1995) If the fluid limit
model is stable at 0, then the corresponding queueing system is
Harris recurrent.
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Queueing Systems - Fluid Limits
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Ranking in Graphs

Ranking schemes
try to extract
information about
the impor-
tance/relevance of
a vertex from graph
properties.
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Ranking in Graphs

Given a weighted adjecency matrix A corresponding to a directed
graph, the following steps are performed

• Colums are rescaled to have column sum 1 (where possible).
• A is made colum stochastic by adding artificial entries in zero
columns.
• A is made irreducible e.g. by considering for some α ∈ (0, 1)

Ã := αA + (1− α)eeT

Then Perron-Frobenius theory says that there is an eigenvector
r > 0 such that

Ar = r

The entries of r quantify the importance of the nodes.
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Ranking in Graphs: Eliminating zero columns
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Ranking in Graphs: Eliminating zero columns
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Ranking in Graphs - Ensuring irreducibility

Given the weighted adjecency matrix A ∈ Rn×n consider the
enlarged matrix [

A 0

0 0

]
∈ R(n+m)×(n+m)
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Ranking in Graphs

Consider the graph described by A as weakly coupled with a larger
network. Coupling described by vectors v and w .

B =

[
αA + (1− α)vneT

n wneT
m

(1− α)vmeT
n wmeT

m

]

Notation: e :=
[
1 1 . . . 1

]T
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Ranking in Graphs

B =

[
αA + (1− α)vneT

n wneT
m

(1− α)vmeT
n wmeT

m

]

Proposition Assume that B is irreducible, then if x =
[
xT
n xT

m

]T
is an eigenvector corresponding to the eigenvalue 1 of B then xn is
an eigenvector corresponding to the eigenvalue 1 of the matrix

Aα(v ,w) := αA + (1− α)

(
vn +

eT
mvm

1− eT
mwm

wn

)
eT
n .

Furthermore, Aα(v ,w) is irreducible.
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A simple example

Frontiers in network science - advances and applications

Volkswagen Symposium: 28.-30. September 2009, Berlin
10/17

Dynamic Large-Scale

Logistics Networks

10/17
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Ranking in Queueing Networks

How can we evaluate if a reduced order model is sufficiently close
to the original one ?

The invariant probability distributions should be close to the
original one.
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Particular case: Jackson Networks

In Jackson networks each server serves exactly one class of jobs.
The arrival process is Poisson and the service times are
exponentially distributed.

Vector of external arrivals: α
Traffic equation for effective load of a server:

λ = PTλ+ α .

Without the embedding in a larger network λ is the ranking vector.
λ determines the stationary probability distribution. So in this case
there is no problem.
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Heuristics

Theorem The following procedures for reduction do not change
the rank of unaffected nodes.
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Thank you
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