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Needs for distributed control theory

Three major challenges:

Rapidly increasing complexity

Dynamic interaction

Information is decentralized
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Building theoretical foundations for distributed control

A centralized paradigm dominates
theory and curriculum today

We need methodology for

Decentralized specifications

Decentralized design

Validation of global behavior
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Can Systems be Certified Distributively?

Componentwise performance verification without global model?
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Example 1: A vehicle formation

x1 x2 x3 x4 x5

Each vehicle obeys the independent dynamics






x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=







∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1(t) +w1(t)
B2u2(t) +w2(t)
B3u3(t) +w3(t)
B4u4(t) +w4(t)







The objective is to make EpCxi+1 − Cxip2 small for i = 1, . . . , 4.
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Example 2: A supply chain for fresh products

x1 x2 x3 x4 x5

Fresh products degrade with time:



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

x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=
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
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

∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







−u1(t) +w1(t)
u1(t) − u2(t)
u2(t) − u3(t)
u3(t) +w4(t)






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Example 3: Water distribution systems

x1

x2

x3

w1

w2

w3

u1

u2

u3

2

6

6

4

x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)

3

7

7

5

=

2

6

6

4

∗ 0 0 0

∗ ∗ 0 0

0 ∗ ∗ 0

0 0 ∗ ∗

3

7

7

5

2

6

6

4

x1(t)
x2(t)
x3(t)
x4(t)

3

7

7

5

+

2

6

6

4

B1u1 +w1
B2u2 +w2
B3u3 +w3
B4u4 +w4

3

7

7

5

Anders Rantzer Games and Price Mechanisms for Distributed Co ntrol



Example 4: Wind farms

x1 x2 x3 x4







x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=
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



∗ ∗ 0 0

∗ ∗ ∗ 0

0 ∗ ∗ ∗

0 0 ∗ ∗
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
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x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1(t) +w1(t)
B2u2(t) +w2(t)
B3u3(t) +w3(t)
B4u4(t) +w4(t)






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Disturbance Rejection with Graph Structure

{1(z1)

w1 =
∑3
j=1M1 j zj

{2(z2)

w2 =
∑3
j=1M2 j zj

{3(z3)

w3 =
∑4
j=1M3 j zj

{4(z4)

w4 =
∑4
j=3M4 j zj

z1

z2

z3

z4

Evaluate the cost subject to worst case disturbances w:

maxw
∑

i {i(zi) where
∑

j Mi j zj = wi
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Optimization Without Disturbances

{1(z1)

0 =
∑3
j=1M1 j zj

{2(z2)

0 =
∑3
j=1M2 j zj

{3(z3)

0 =
∑4
j=1M3 j zj

{4(z4)

0 =
∑4
j=3M4 j zj

z1

z2

z3

z4

Minimizez
∑

i {i(zi) subject to
∑

j Mi j zj = 0

Assume {i convex. Game formulation by dual decomposition!
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Outline

○ Introduction

• Games from Dual Decomposition

○ Game Formulation for Distributed Disturbance Rejection

○ Dynamic Problems

Anders Rantzer Games and Price Mechanisms for Distributed Co ntrol



50 year old idea: Dual decomposition

min
zi
[V1(z1, z2) + V2(z2) + V3(z3, z2)]

= max
pi
min
zi,vi

[

V1(z1,v1) + V2(z2) + V3(z3,v3) + p1(z2 − v1) + p3(z2 − v3)
]

The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respecive costs

Computer 1: minz1,v1
[
V1(z1,v1) − p1v1

]

Computer 2: minz2
[
V2(z2) + (p1 + p3)z2

]

Computer 3: minz3,v3
[
V3(z3,v3) − p3v3

]

while the ”market makers” try to maximize their payoffs

Between computer 1 and 2: maxp1 [p1(z2 − v1)]

Between computer 2 and 3: maxp3 [p3(z2 − v3)]
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Decentralized Bounds on Suboptimality

Given any p1, p3, z̄1, z̄2, z̄3, the distributed test

V1(z̄1, z̄2) − p1 z̄2 ≤ α min
z1,v1

[V1(z1,v1) − p1v1]

V2(z̄2) + (p1 + p3)z̄2 ≤ α min
z2
[V2(z2) + (p1 + p3)z2]

V3(z̄3, z̄2) − p3 z̄2 ≤ α min
z3,v3

[V3(z3,v3) − p3v3]

implies that the globally optimal cost J∗ is bounded as

J∗ ≤ V1(z̄1, z̄2) + V2(z̄2) + V3(z̄3, z̄2) ≤ α J∗

Proof: Add both sides up!
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The saddle point algorithm

Update in gradient direction:

Computer 1:

{

ż1 = −�V1/�z1

v̇1 = −�V1/�z2 + p1

Computer 1 and 2: ṗ1 = z2 − v1

Computer 2: ż2 = −�V2/�z2 − p1 − p3

Computer 2 and 3: ṗ3 = z2 − v3

Computer 3:

{

ż3 = −�V3/�z3

v̇3 = −�V3/�z2 + p3

Globally convergent if Vi are convex!
[Arrow, Hurwicz, Usawa 1958]
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Important Aspects of Dual Decomposition

Very weak assumptions on graph

No need for central coordination

Decentralized bounds on suboptimality

Unique Nash equilibrium corresponds to global optimum

Natural learning procedure is globally convergent

Conclusion: Ideal for control synthesis by prescriptive games
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Outline

○ Introduction

○ Games from Dual Decomposition

• Game Formulation for Distributed Disturbance Rejection

○ Dynamic Problems
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Disturbance Rejection with Graph Structure

{1(z1) = pz1p
2

w1 =
∑3
j=1M1 j zj

{2(z2) = pz2p
2

w2 =
∑3
j=1M2 j zj

{3(z3) = pz3p
2

w3 =
∑4
j=1M3 j zj

{4(z4) = pz4p
2

w4 =
∑4
j=3M4 j zj

z1

z2

z3

z4

The disturbance rejection specification

γ 2 ≥ maxpwp≤1
∑

i pzip
2 subject to

∑

j Mi j zj = wi

can be re-written as MTM ≥ γ −2 I. Is there a game to test this?
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A Matrix Decomposition Theorem

The sparse matrix on the left is positive semi-definite if and only
if it can be written as a sum of positive semi-definite matrices
with the structure on the right.
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Proof idea

The decomposition follows immediately from the band structure
of the Cholesky factors:
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Generalization

Cholesky factors inherit the sparsity structure of the symmetric
matrix if and only if the sparsity pattern corresponds to a
“chordal” graph.
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[Blair & Peyton, An introduction to chordal graphs and clique trees, 1992]
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Distributed Disturbance Rejection as a Game

The disturbance rejection specification

γ 2 ≥ maxpwp≤1
∑

i pzip
2 subject to

∑

j Mi j zj = wi

can be re-written as MTM ≥ γ −2 I. The condition
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︸ ︷︷ ︸

MTM−γ −2 I

︸︷︷︸

X1

︸︷︷︸

X2

︸︷︷︸

Xm

with Xi ≥ 0 can be solved as a game using dual decomposition!
However, the method works only for chordal graphs...
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Outline

○ Introduction

○ Games from Dual Decomposition

○ Distributed Disturbance Rejection as a Game

• Dynamic Problems
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A control problem with graph structure

x1 x2 xJ−1 xJ








x1(τ + 1)
x2(τ + 1)

...
xJ (τ + 1)







=









A11 A12 0

A21
. . . . . .
. . . . . . A(J−1)J

0 AJ(J−1) AJJ
















x1(τ )
x2(τ )

...
xJ (τ )







+








u1(τ )
u2(τ )

...
uJ (τ )








Minimize the convex objective
∑N
t=0

J∑

i=1

{i(xi(τ ),ui(τ ))

︸ ︷︷ ︸

{(x(τ ),u(τ ))

with convex constraints xi(τ ) ∈ Xi, ui(τ ) ∈ Ui and x(0) = x̄.
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Decomposing the problem

Minimize
∑N
t=0 {(x(τ ),u(τ ))

subject to







x1(τ + 1)
x2(τ + 1)

...
xJ (τ + 1)







=








A11x1(τ )
A22x2(τ )

...
AJJ xJ (τ )







+








v1(τ )
v2(τ )

...
vJ (τ )







+








u1(τ )
u2(τ )

...
uJ (τ )








where x(0) = x̄ and

vi =
∑

j ,=iAi jx j

holds for all i.
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Decomposing the Cost Function

max
p
min
u,v,x

N∑

τ=0

J∑

i=1

[

{i(xi,ui) + p
T
i

(

vi −
∑

j ,=iAi jx j

) ]

= max
p

∑

i

min
ui,xi

N∑

τ=0

[

{i(xi,ui) + p
T
i vi − x

T
i

(
∑

j ,=iA
T
jipj

) ]

︸ ︷︷ ︸

{p
i
(xi,ui,vi)

so, given the sequences {pj(t)}Nt=0, agent i should minimize

N∑

τ=0

{i(xi,ui)

︸ ︷︷ ︸

local cost

+

what he expects others to charge him
︷ ︸︸ ︷

N∑

τ=0

pTi vi −
N∑

τ=0

xTi

(
∑

j ,=iA
T
jipj

)

︸ ︷︷ ︸

what he is payed by others

subject to xi(t+ 1) = Aiixi(t) + vi(t) + ui(t) and xi(0) = x̄i.
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Conclusions

Convex sparse minimization with additive objective can be
converted to game using dual decomposition

Distributed disturbance rejection can be written as game,
but so far only for chordal graphs
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