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Introduction

Stochastic games are dynamic (discrete-time) games in which
current play influences the evolution of a payoff-relevant state
variable.

Very little is known on the set of equilibrium payoffs in
discounted stochastic games.

Our objective is to characterize limit set of equilibrium payoffs
(as players become very patient). We do so, under some rather
strong assumptions on the transitions.
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Setup
We consider stochastic games with public signals.

I is the set of players.

S is the set of possible states.

Ai is the action set of player i , and A :=
∏

i∈I Ai .

Y is the set of public signals.

r : S × A → RI (stage) payoff function: r(s,a) is the payoff
vector when playing a ∈ A in state s.

p(t , y |s,a) is the probability of moving to t ∈ S and of
getting y ∈ Y when playing a in state s.

All sets are finite.

At stage n, players choose (ai
n)i∈I, nature chooses the pair

(sn+1, yn) ∼ p(·|sn,an), which is publicly disclosed. The game
then moves to stage n + 1.

Player i maximizes expectation of (1 − δ)
+∞
∑

n=1

δn−1r(sn,an).
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Setup (2)

We focus on subgame perfect equilibria in public strategies
(PPE): these are strategies that only depend on public
information (public signals + past and present states).

We denote by Eδ(s) ⊂ RI the set of PPE payoffs, when the
initial state is s.

Assumption: For any ~a = (as) ∈ AS, the Markov chain over S
with transition function p(t |s,as) is irreducible.

Then distance between Eδ(s) and Eδ(t) goes to 0.
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1,1
0,3

1,1 3,0

Actions are denoted a and b;

If a, state changes with probability 2
3 ;

If b, state changes with probability 1
3 .

minmax payoff is 1 for each player.

(1,1) is an obvious equilibrium payoff.

Are there others ?

Assume that states, and only states, are publicly disclosed.

Player 1 gets higher payoffs in state 2 than in state 1.

And playing a increases the probability of moving to state 2.
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A simple example

1,1
0,3

1,1 3,0

Player 1 may be willing to play b when in state 1, only if
provided with a higher continuation payoff, should the play
remain in state 1.

Equilibrium payoffs other than (1,1) thus require playing a
string of b, then of a’s when in state 1, and adjusting
continuation payoffs.

This is tricky...
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The Results – A characterization

Denote by k(λ) the value of P(λ).

Set H = {v : λ · v ≤ k(λ) for every λ ∈ RI}.

Then H = limδ→1 Eδ(s). Formally,

Theorem

lim supδ→1 Eδ(s) ⊆ H.

Theorem

Assume that H has non-empty interior. Then, for every
compact set W contained in the interior of H, one has
W ⊂ Eδ(s) for every high enough δ.

Extends to the case where some of the player are short-run
players.
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Definition (Statistic Identifiability Conditions)

αs has individual full rank for i at s if Πi(s, α) has rank |Ai |. It
has pairwise full rank for players i and j at state s if Πij(s, α) has
rank |Ai | + |Aj | − 1.

ifr means that public signals allow to identify (statistically) the
action of player i ;

pfr means moreover that players can tell which of i and j
deviated.

Theorem (loose)

Under ifr and pfr, Eδ(s) converges to the set of feasible and IR
payoffs (if it has non-empty interior).
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1,1
0,3

1,1 3,0

If a, state changes with probability 2
3 ;

If b, state changes with probability 1
3 .

Feasible set is a losange with vertices (1,1), (3
2 ,

3
2), (1

3 ,
7
3),

(7
3 ,

1
3).

Full rank assumptions are satisfied.

Hence, limit set of equilibrium payoffs is the set of all payoffs in
this losange, which lie above (1,1).

We still don’t know how to construct equilibrium strategies...

Stochastic Games
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Conclusion

We characterize the (limit) of equilibrium payoffs in stochastic
games, when players get very patient.

Requires solving infinitely many linear programs.

In practice, guess and check.

Extensions:

Do we need all these constraints ?

Continuous state space: work in progress.
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Where do the constraints come from ? – A relaxation

Natural adaptation: highest PPE payoff in direction λ solves
supλ · vs, subject to

αs NE with payoff vs of the Shapley game with payoff

(1 − δ)r(s,a) + δ
∑

t,y

p(t , y |a)wt(s, y).

λ · wt(s, y) ≤ λ · vt for each t , y .

This program is not independent of δ.

It becomes independent if one relaxes the last constraint to
∑

s∈T

λ ·
(

wφ(s)(s, ys) − vφ(s)

)

≤ 0,

(for each T ⊆ S, φ ∈ σ(T ) – quantifier will be omitted
henceforth).

Our results show that it is the right relaxation.
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There are ηT ,φ ≥ 0 s.t., for each (yt(s)) ∈ RS×S , one has

∑
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(

∑

t∈S

q(t |s)yt (s)

)

=
∑

T ,φ

ηT ,φ

(
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s∈T
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)

Corollary

If (v , x , α) is feasible in P(λ), then

λ · v ≤ λ ·
∑

s∈S

µα(s)r(s, αs).



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).

Proposition

Let p,q be irreducible transition functions with the same
invariant measure µ. Then H(p) = H(q).



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).

Proposition

Let p,q be irreducible transition functions with the same
invariant measure µ. Then H(p) = H(q).

P1 : Im(I − P) = Im(I − Q)



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).

Proposition

Let p,q be irreducible transition functions with the same
invariant measure µ. Then H(p) = H(q).

P1 : Im(I − P) = Im(I − Q)

P2 : Let (xt (s)) satisfy
∑

s∈T xφ(s)(s) ≤ 0. There
exists x∗ ≥ x , s.t.

∑

s∈T x∗

φ(s)(s) = 0.



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).

Proposition

Let p,q be irreducible transition functions with the same
invariant measure µ. Then H(p) = H(q).

P1 : Im(I − P) = Im(I − Q)

P2 : Let (xt (s)) satisfy
∑

s∈T xφ(s)(s) ≤ 0. There
exists x∗ ≥ x , s.t.

∑

s∈T x∗

φ(s)(s) = 0.

Fix (v , x , α) feasible in Pp(λ).



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).

Proposition

Let p,q be irreducible transition functions with the same
invariant measure µ. Then H(p) = H(q).

P1 : Im(I − P) = Im(I − Q)

P2 : Let (xt (s)) satisfy
∑

s∈T xφ(s)(s) ≤ 0. There
exists x∗ ≥ x , s.t.

∑

s∈T x∗

φ(s)(s) = 0.

Fix (v , x , α) feasible in Pp(λ). Set ct(s) = maxy λ · ct(s, y).
Apply P2 to get c∗

t (s) = c̄t − c̄s.



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).

Proposition

Let p,q be irreducible transition functions with the same
invariant measure µ. Then H(p) = H(q).

P1 : Im(I − P) = Im(I − Q)

P2 : Let (xt (s)) satisfy
∑

s∈T xφ(s)(s) ≤ 0. There
exists x∗ ≥ x , s.t.

∑

s∈T x∗

φ(s)(s) = 0.

Fix (v , x , α) feasible in Pp(λ). Set ct(s) = maxy λ · ct(s, y).
Apply P2 to get c∗

t (s) = c̄t − c̄s.
Choose d̄ s.t. (I − P)c̄ = (I − Q)d̄ . Set dt(s) = d̄t − d̄s.



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).

Proposition

Let p,q be irreducible transition functions with the same
invariant measure µ. Then H(p) = H(q).

P1 : Im(I − P) = Im(I − Q)

P2 : Let (xt (s)) satisfy
∑

s∈T xφ(s)(s) ≤ 0. There
exists x∗ ≥ x , s.t.

∑

s∈T x∗

φ(s)(s) = 0.

Fix (v , x , α) feasible in Pp(λ). Set ct(s) = maxy λ · ct(s, y).
Apply P2 to get c∗

t (s) = c̄t − c̄s.
Choose d̄ s.t. (I − P)c̄ = (I − Q)d̄ . Set dt(s) = d̄t − d̄s.
Set

z i
t (s, y) =

λi

|λi |
dt(s) +

∑

u∈S

(

x i
u(s, y) −

λi

|λi |
c∗

u(s)

)

.



Action independent transitions
We here assume that transitions are p(t |s)π(y |s,a).

Proposition

Let p,q be irreducible transition functions with the same
invariant measure µ. Then H(p) = H(q).

P1 : Im(I − P) = Im(I − Q)

P2 : Let (xt (s)) satisfy
∑

s∈T xφ(s)(s) ≤ 0. There
exists x∗ ≥ x , s.t.

∑
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φ(s)(s) = 0.

Fix (v , x , α) feasible in Pp(λ). Set ct(s) = maxy λ · ct(s, y).
Apply P2 to get c∗

t (s) = c̄t − c̄s.
Choose d̄ s.t. (I − P)c̄ = (I − Q)d̄ . Set dt(s) = d̄t − d̄s.
Set

z i
t (s, y) =
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|λi |
dt(s) +

∑

u∈S

(

x i
u(s, y) −

λi

|λi |
c∗

u(s)

)

.

Then (v , z, α) is feasible in Pq(λ).
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lim sup{vδ(s)} ⊆ H, hence H 6= ∅.
H = [−k(−1), k(+1)], and k(1) ≥ −k(−1) since H 6= ∅.
(v , x , α) feasible in P(λ) implies (v , x ,a) feasible, for each
a = (as) ’in the support’ of α⇒ pure strategies.
If (v , x ,a) feasible in P(1), then

v =
∑

s∈S

µa(s)r(s,as) +
∑

T ,φ

πT ,φ





∑

sinT

xφ(s)(s)



 .

If (w , y ,a) feasible in P(−1), similar formula links w and y .
Thus, v ≤ w , hence k(1) ≤ −k(−1): H = {v∗}.

Claim If (xt(s)) is s.t.
∑

s∈T xφ(s)(s) = 0

v∗

s ≤ r(s,as) +
∑

t∈S

p(t |s)xt (s)

for some a = (as), then equality must hold.
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Pick (x ,a∗) such that (v∗, x ,a∗) feasible in P(1).

Pick x∗ ≥ x , such that
∑

s∈T x∗

φ(s)(s) = 0.

Claim : v∗ = max
as∈A

(

r(s,as) +
∑

t∈S

p(t |s,as)x∗

t (s)

)

.

for as = a∗

s, one has ≤.

Previous claim implies =.

Pick y∗ ∈ RS , such that x∗

t (s) = y∗

t − y∗

s .

Then

v∗ + y∗

s = max
as∈A

(

r(s,as) +
∑

t∈S

p(t |s,as)y∗

t

)

.

This is the Average Cost Optimality Equation in DP.


