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Networked interaction: Societal, engineered, & hybrid
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Equilibrium selection & dynamics

• How could agents converge to NE?

Arrow: “The attainment of equilibrium requires a disequilibrium process.”

• Monographs:

– Weibull, Evolutionary Game Theory, 1997.
– Young, Individual Strategy and Social Structure, 1998.
– Fudenberg & Levine, The Theory of Learning in Games, 1998.
– Samuelson, Evolutionary Games and Equilibrium Selection, 1998.
– Young, Strategic Learning and Its Limits, 2004.
– Sandholm, Population Dynamics and Evolutionary Games, 2010.

• Surveys:

– Hart, “Adaptive heuristics”, Econometrica, 2005.
– Fudenberg & Levine, “Learning and equilibrium”, Annual Review of Economics, 2009.

2



Equilibrium selection & efficiency

• If agents self-organize to Nash equilibrium...

– Price of Anarchy:
Optimal global objective

Worst case NE
=

maxaG(a)

mina∈NEG(a)

– Price of Stability:
Optimal global objective

Best case NE
=

maxaG(a)

maxa∈NEG(a)

What about dynamics?
Stable? Unstable? Stabilized? Destabilized?
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Dominance & dynamics

A B
A 4,4 0,0
B 0,0 3,3

Typewriter Game

S H
S 3,3 0,1
H 1,0 1,1

Stag Hunt

• How to distinguish equlibria?

• Payoff based distinctions: Payoff dominance vs Risk dominance

• Evolutionary (i.e., dynamic) distinction

– Young (1993) “The evolution of convention”
– Kandori/Mailath/Rob (1993) “Learning, mutation, and long-run equilibria in games”
– many more...

• Adaptive play:

– “Two” players sparsely sample from finite history
– Players either:
∗ Play best response to selection
∗ Experiment with small probability

– Young (1993): Risk dominance is “stochastically stable”
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Outline

• Dynamics & equilibrium selection theme continued...

– Constrained log linear learning
– Self assembly
– Dynamic reinforcement dynamics

• “Prescriptive” issues & opportunities

– What are implications of additional constraints?
– How to exploit additional degrees of freedom?
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Setup

• Setup:

– Players: {1, ..., p}
– Actions: ai ∈ Ai
– Action profiles:

(a1, a2, ..., ap) ∈ A = A1 ×A2 × ...×Ap

– Payoffs: ui : (a1, a2, ..., ap) = (ai, a−i) 7→ R

– Global objective: G : A → R

• Action profile a∗ ∈ A is a Nash equilibrium (NE) if for all players:

ui(a
∗
1, a
∗
2, ..., a

∗
p) = ui(a

∗
i , a
∗
−i) ≥ ui(a

′
i, a
∗
−i)

• Learning dynamics:

– t = 0, 1, 2, ...

– Pr [ai(t)] = pi(t), pi(t) ∈ ∆(Ai)
– pi(t) = Fi(available info at time t)
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Special class: potential games

• Potential games: For some φ : A → R

φ(ai, a−i)− φ(a′i, a−i) > 0

⇔
ui(ai, a−i)− ui(a′i, a−i) > 0

i.e., potential function increases iff unilateral improvement.

• Features:

– Typical of “coordination games”
– Desirable convergence properties under various algorithms
– Need not imply “cooperation” or φ = G

– Prescriptive opportunity: Potential game by design
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Illustrations

• Distributed routing

– Payoff = negative congestion. cr(σr)
– Potential function:

φ =
∑
r

σr∑
n=1

cr(n)

– Overall congestion:

G =
∑
r

σrcr(σr)

– Note: φ 6= G

• Multiagent sudoku:

ui(a) =#reps in row + #reps in column +
#reps in sector

φ(a) =
∑
i

ui(a)
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Log-linear learning

• Preliminary: Gibbs distribution

Pr [vi] ∝ evi/T

As T ↓ 0 assigns all probability to arg max {v1, v2, ..., vn}

• At stage t

– Player i is selected at random
– Chosen player selects

Pr [ai(t) = j] ∝ eui(j,a−i(t−1))/T

– Interpretation: Noisy best reply to previous joint actions

• Fact: SAP results in a Markov chain over joint action space
A with a unique stationary distribution, µ.

• Blume (1993): In (cardinal) potential games, steady-state
distribution satisfies

Pr [a] ∝ eφ(a)/T

– Implication: As T ↓ 0, concentrated at potential maximizer
– i.e., Potential maximizer is “stochastically stable”
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Log linear learning with constraints

• Impose constrained evolution:

ai(t) ∈ C(ai(t− 1))

– Limited mobility
– Obstacles

• Mimicking log linear learning alters stochastically stable action profiles!

• Example: Identical interest game

L M R
U 0 0 9
D 10 -10 -10

C2(L) = {L,M} C2(M) = {L,M,R} C2(R) = {M,R}

– Potential maximizer: (D,L)

– Stochastically stable state: (U,R)

– Intuition:
∗ (U,R)→ (D,L) “costs” 18 (used to cost 9)
∗ (D,L)→ (U,R) “costs” 10 (used to cost 10)

10



Binary log linear learning

• At stage t:

– Player i is selected at random
– Chosen player compares ai(t− 1) with randomly selected a′i ∈ C(ai(t− 1))

Pr [ai(t)] ∝ eui(ai(t−1),a−i(t−1))/T vs eui(a
′
i,a−i(t−1))/T

• Marden & JSS, 2008: Under binary log linear learning, only potential function maximiz-
ers are stochastically stable.

• No longer characterize stationary distribution.

• Recall example:

L M R
U 0 0 9
D 10 -10 -10

• Binary version: (U,M)→ (U,L) now has zero resistance.
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Payoff based log linear learning

• What if evaluation of Ui(a′, a−i(t− 1)) no longer possible?

• New setup: Players can only measure ai(t) and Ui(a(t))

• Introduce baseline action abi(t) and baseline utility ubi(t)

• Action selection:
ai(t) = abi(t) with probability (1− ε)

ai(t) is chosen randomly over Ai with probability ε

• Baseline action & utility update:

New baseline
with probability ∼ eUi(a(t))/T

⇓

abi(t + 1) = ai(t)

ubi(t + 1) = ui(a(t))

Keep baseline
with probability ∼ eu

b
i(t)/T

⇓

abi(t + 1) = abi(t)

ubi(t + 1) = ubi(t)

• Marden & JSS, 2008: Under payoff based linear learning, only potential function maxi-
mizers are stochastically stable.
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Proofs: Stochastic potential

• Definition:

– Let P ε denote the transition probability matrix of an irreducible & aperiodic Markov chain.
– Let µε be the (unique) stationary distribution for P ε

– A state, x, is stochastically stable if
lim inf
ε→0

µε(x) > 0

• Young (1993): To determine stochastic stability

– View learning dynamics as ε perturbation of reference (ε = 0) Markov chain
– Divide reference Markov chain into recurrence classes
– Define resistance to transition between recurrence classes:

0 < lim
ε↓0

P ε
ij

εr(i→j)
<∞

– Form stochastic potential for each recurrence class
– Minimal stochastic potential implies stochastic stability

• Combinatoric utilization vs pragmatic utilization
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Illustration: Sensor allocation

• Objective: Maximize expected reward

φ(a) =
∑
x

R(x)P (x, a)

P (x, a) = 1− Πn
i=1(1− pi(x, ai))

• Implementation:

– Assign sensor utilities to induce potential game
– Apply constrained binary log-linear learning
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Self assembly

• Atoms form subassemblies.

• Subassemblies form complete assem-
blies.

• References:

– Yim, Shen, Salemi, Rus, Moll, Lipson, Klavins, & Chirikjian, “Modular self-reconfigurable
robot systems: Challenges and opportunities for the future”, 2007.

– Klavins, “Programmable self-assembly”, 2007.
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Self assembly, cont

• General setup:

– Nonlocal rules
– Full “graph grammars”

• Specialized setup:

– Serial assembly
– Local rules
– Bond or break
– Reversibility
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Assembly rules

• Complete assembly = Acyclic weighted graph

• Node state: (Position, Vacancies)

• Nodes meet randomly

• If singleton meets vacancy: Active nodes update state

• Singletons break off with probability ε
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Simulation observation

Critical case: #Atoms = Integer multiple of final assembly
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Self assembly & stochastic stability

• Theorem (Fox & JSS, 2009): A state is stochastically stable if and only if there is a
minimal number of (sub)assemblies.

• Corollary: Let a complete assembly have N parts. The maximum number of incomplete
assemblies is N − 1. (For any number of atoms.)
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Self assembly proof sketch

• Form a “backbone” of states with m subassemblies

• Level down: Resistance of 1

• Level up: Resistance at least 2

20



Dynamic reinforcement learning dynamics

• Reinforcement learning: xi = action propensities

xi(t + 1) = xi(t) + δ(t)(ai(t)− xi(t)), δ(t) =
ui(a(t))

t + 1

pi(t) = (1− ε)xi(t) +
ε

N
1

δstd(t) =
ui(a(t))

1TUi(t) + ui(a(t))

Interpretation: Increased probability of utilized action.

• Dynamic reinforcement learning: Introduce running average

yi(t + 1) = yi(t) +
1

t + 1
(xi(t)− yi(t))

pi(t) = (1− ε)Π∆

xi(t) + γ(xi(t)− yi(t))︸ ︷︷ ︸
new term

 +
ε

N
1
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Marginal foresight dominance

• Chasparis & JSS (2009): The pure NE a∗ has positive probability of convergence iff

0 < γi <
ui(a

∗
i , a−i)− ui(a′i, a∗−i) + 1

ui(a′i, a
∗
−i)

, ∀a′i 6= a∗i

(as opposed to all pure NE)
Proof: ODE method of stochastic approximation.

• Implication:

– Introduction of “forward looking” agent can destabilize equilibria
– Surviving equilibria = equilibrium selection

• For 2× 2 symmetric coordination games

– RD & not PD⇒ foresight dominance
– RD & PD & Identical interest⇒ foresight dominance
– RD & PD together 6⇒ foresight dominance
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Marginal foresight & mixed equlibria

• Similar ideas can stabilize equilibria (Arslan & JSS)

• Illustration: Perturbed RPS & Marginal foresight replicator dynamics
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Illustration: Network formation

• Setup:

– Agents form costly links with other agents
– Benefits inherited from connectivity

ui(a(t)) =
(

# of connections to i
)
− κ ·

(
# of links by i

)
• Properties:

– Nash networks are “critically connected”
– Wheel network is unique efficient network
– Chasparis & JSS (2009): The wheel network is foresight dominant.

24



Final remarks

• Recap:

– Dynamics & equilibrium selection
– Prescriptive agenda influence

• Future work:

– Convergence rates
– Fully exploit prescriptive agenda
– Agent dynamics
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