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Networked interaction: Societal, engineered, & hybrid




Equilibrium selection & dynamics

e How could agents converge to NE?

Arrow: “The attainment of equilibrium requires a disequilibrium process.”

e Monographs:

— Weibull, Evolutionary Game Theory, 1997.

- Young, Individual Strategy and Social Structure, 1998.

— Fudenberg & Levine, The Theory of Learning in Games, 1998.

- Samuelson, Evolutionary Games and Equilibrium Selection, 1998.
- Young, Strategic Learning and Its Limits, 2004.

— Sandholm, Population Dynamics and Evolutionary Games, 2010.

e Surveys:

- Hart, “Adaptive heuristics”, Econometrica, 2005.
— Fudenberg & Levine, “Learning and equilibrium”, Annual Review of Economics, 2009.



Equilibrium selection & efficiency

e If agents self-organize to Nash equilibrium...

— Price of Anarchy:
Optimal global objective ~ max, G(a)

Worst case NE  mingene G(a)

— Price of Stability:
Optimal global objective  max, G(a)

Best case NE  maxgene Gl(a)
X
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What about dynamics?

Stable? Unstable? Stabilized? Destabilized?




Dominance & dynamics

A B S H
Al4,4/0,0 S|3,3/0,1
B|10,0 3,3 H 1,0 1,1

Typewriter Game Stag Hunt

e How to distinguish equlibria?
e Payoff based distinctions: Payoff dominance vs Risk dominance
e Evolutionary (i.e., dynamic) distinction

— Young (1993) “The evolution of convention”
— Kandori/Mailath/Rob (1993) “Learning, mutation, and long-run equilibria in games”
— many more...

e Adaptive play:
— “Two” players sparsely sample from finite history

— Players either:

x Play best response to selection
+ Experiment with small probability

— Young (1993): Risk dominance is “stochastically stable”



Outline

e Dynamics & equilibrium selection theme continued...

— Constrained log linear learning
— Self assembly
— Dynamic reinforcement dynamics

e “Prescriptive” issues & opportunities

— What are implications of additional constraints?
— How to exploit additional degrees of freedom?



Setup

e Setup:
- Players: {1, ..., p}
— Actions: a; € A;
— Action profiles:
(al,ag, ...,ap) ceA=A4A; x Ay x ... X .Ap

— Payoffs: w; : (a1, as, ..., a,) = (a;,a—;)) — R
— Global objective: G: A — R

e Action profile a* € A is a Nash equilibrium (NE) if for all players:

ui(ay, ay, .., ay) = wilaj, ;) = uiaj, )

e Learning dynamics:
~t=0,1,2,..
= Pra;(t)] = (% pi(t) € A(A)
— pi(t) = F;(available info at time t)



Special class: potential games

e Potential games: Forsome ¢ : A — R

dla;,a_;) — ¢(a,a_;) >0
S

ui(ag, a_;) —ui(ai,a_;) >0
i.e., potential function increases iff unilateral improvement.

e Features:

— Typical of “coordination games”

— Desirable convergence properties under various algorithms
— Need not imply “cooperation” or ¢ = G

— Prescriptive opportunity: Potential game by design



lllustrations

e Distributed routing

— Payoff = negative congestion. ¢, (o)
— Potential function:

5= o) A* _}E

r n=l1
— Overall congestion:
G = Z orc (o) | i
r Yo 5
—Note: ¢ # G . - >
. 7|6 319 |~
e Multiagent sudoku: @lals lolslz
u;(a) =#reps in row + #reps in column + 5 i} iy
#reps in sector il 0 L)
513 6|1
¢la) = Z ui(a) QA 11]2 6
i 3| A




Log-linear learning

e Preliminary: Gibbs distribution
Pr [v;] oc e’/T
As T | 0 assigns all probability to arg max {vy, vo, ..., v, }
e At stage t

— Player i is selected at random @
\

— Chosen player selects @ @

Pr[a;(t) = j] oc emUiait=1)/T
— Interpretation: Noisy best reply to previous joint actions

e Fact: SAP results in a Markov chain over joint action space
A with a unique stationary distribution, . @ @

6
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e Blume (1993): In (cardinal) potential games, steady-state
distribution satisfies

Pr [a] o e? /T

— Implication: As T" | 0, concentrated at potential maximizer
—i.e., Potential maximizer is “stochastically stable”



Log linear learning with constraints

e Impose constrained evolution:
a;(t) € Cla;(t — 1))
— Limited mobility
— Obstacles
e Mimicking log linear learning alters stochastically stable action profiles!

e Example: Identical interest game

L M R
u o/ 0|9
D|10 |-10|-10

Co(L) ={L,M} Cy(M)={L,M,R} Cy(R)={M, R}
— Potential maximizer: (D, L)
— Stochastically stable state: (U, R)
— Intuition:
x (U, R) — (D, L) “costs” 18 (used to cost 9)
x (D, L) — (U, R) “costs” 10 (used to cost 10)
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Binary log linear learning

e At stage t:

— Player i is selected at random
— Chosen player compares a;(t — 1) with randomly selected a, € C(a;(t — 1))
Pr[a(1)] o etil@lt-Dait=D)/T g Quilahai(t=1))/T
e Marden & JSS, 2008: Under binary log linear learning, only potential function maximiz-
ers are stochastically stable.
e No longer characterize stationary distribution.

e Recall example:

L M R
u o/ 0|9
D|10 |-10|-10

e Binary version: (U, M) — (U, L) now has zero resistance.

11



Payoff based log linear learning

e What if evaluation of U;(a’, a_;(t — 1)) no longer possible?
e New setup: Players can only measure a;(t) and U;(a(t))
e Introduce baseline action a’(t) and baseline utility u(t)

e Action selection:
a;(t) = a’(t) with probability (1 — ¢)

a;(t) is chosen randomly over A; with probability ¢

e Baseline action & utility update:

New baseline Keep baseline
with probability ~ eVi@®)/T  with probability ~ ¢*/®)/T
Y \
a’(t +1) = a;(t) a’(t +1) = a’(t)
ul(t+1) = ui(alt)) ub(t +1) = ul(t)

e Marden & JSS, 2008: Under payoff based linear learning, only potential function maxi-
mizers are stochastically stable.
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Proofs: Stochastic potential

e Definition:

— Let P¢ denote the transition probability matrix of an irreducible & aperiodic Markov chain.
— Let u€ be the (unique) stationary distribution for P¢

- A state, z, is stochastically stable if
liminf p(z) > 0

e—0

e Young (1993): To determine stochastic stability

- View learning dynamics as ¢ perturbation of reference (¢ = 0) Markov chain
— Divide reference Markov chain into recurrence classes
— Define resistance to transition between recurrence classes:

€
0 < lim —
clo er(i—j)

< o0

— Form stochastic potential for each recurrence class
— Minimal stochastic potential implies stochastic stability

a’ cF.@Up

e Combinatoric utilization vs pragmatic utilization
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lllustration: Sensor allocation

e Objective: Maximize expected reward

d(a) =)  R(@)P(z,a)

P(r,a) =1 =I5 (1 = pi(z, a;))
e Implementation:

— Assign sensor utilities to induce potential game
— Apply constrained binary log-linear learning
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Self assembly

e Atoms form subassemblies.

e Subassemblies form complete assem- l
blies.

e References:

- Yim, Shen, Salemi, Rus, Moll, Lipson, Klavins, & Chirikjian, “Modular self-reconfigurable
robot systems: Challenges and opportunities for the future”, 2007.

- Klavins, “Programmable self-assembly”, 2007.
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Self assembly, cont

\
/ + () —®
l
/@—@—@
©

e General setup:

— Nonlocal rules
— Full “graph grammars”

/
e Specialized setup:

— Serial assembly
— Local rules

— Bond or break
— Reversibility
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Assembly rules

GOAL ASSEMBLY

e Complete assembly = Acyclic weighted graph

e Node state: (Position, Vacancies)

e Nodes meet randomly

e If singleton meets vacancy: Active nodes update state
e Singletons break off with probability e

17




Simulation observation

Critical case: #Atoms = Integer multiple of final assembly

18



Self assembly & stochastic stability

e Theorem (Fox & JSS, 2009): A state is stochastically stable if and only if there is a
minimal number of (sub)assemblies.

e Corollary: Let a complete assembly have N parts. The maximum number of incomplete
assemblies is N — 1. (For any number of atoms.)
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Self assembly proof sketch

8328¢
F “packbone” of ith b bli Zggggggo/g\@
T

e Level down: Resistance of 1
e Level up: Resistance at least 2 .
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Dynamic reinforcement learning dynamics

e Reinforcement learning: z; = action propensities

Ti(t 4+ 1) = 2;(t) + 6(t)(ai(t) — x3(t)), O(t) = wi(a(t))

pilt) = (1= e)a(t) + 1

u;(a(t))

dstd(t) = 1TU,(t) + us(a(t))

Interpretation: Increased probability of utilized action.

e Dynamic reinforcement learning: Introduce running average

1

yi(t + 1) = yi(t) + H—l(xz(t) — yi(t))

pi(t) = (1 —e)lla |@i(t) + yl@i(t) —uit)) | + %1

Ve

new term
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Marginal foresight dominance

e Chasparis & JSS (2009): The pure NE a* has positive probability of convergence iff
ui(al,a_;) — ui(al,a*;) + 1

ui(%? a’*—z)

0< < , Va, #a}

(as opposed to all pure NE)
Proof: ODE method of stochastic approximation.

e Implication:
— Introduction of “forward looking” agent can destabilize equilibria
— Surviving equilibria = equilibrium selection

e For 2 x 2 symmetric coordination games

— RD & not PD = foresight dominance
— RD & PD & Identical interest = foresight dominance
— RD & PD together #- foresight dominance
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Marginal foresight & mixed equlibria

e Similar ideas can stabilize equilibria (Arslan & JSS)

e lllustration: Perturbed RPS & Marginal foresight replicator dynamics
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Illustration: Network formation

e Setup:
— Agents form costly links with other agents
— Benefits inherited from connectivity
ui(a(t)) = (# of connections to z) — K- (# of links by z)

e Properties:

— Nash networks are “critically connected”
— Wheel network is unique efficient network
— Chasparis & JSS (2009): The wheel network is foresight dominant.

ANAN

2-K
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Final remarks

e Recap:

— Dynamics & equilibrium selection
— Prescriptive agenda influence

e Future work:

— Convergence rates
— Fully exploit prescriptive agenda
— Agent dynamics
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