

Algorithms for cautious [reasoning in](#page-24-0) games

Asheim and

Algorithms for cautious reasoning in games Illuminating the differences between non-equilibrium concepts

Geir B. Asheim and Andrés Perea

University of Oslo and University of Maastricht

LCCC workshop, Lund, 10–12 March 2010

Caution

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Caution](#page-1-0)

A player is cautious

- \blacksquare if he/she takes into account all opponent strategies,
- \blacksquare if he/she prefers one strategy over another whenever the former weakly dominates the latter

Question: What strategies can be best responses

- \blacksquare if each player is cautious & believes in opponent rationality
- \blacksquare if each player does not take into account the possibility the opponent not be cautious & believe in opponent rationality
- \blacksquare if each player does *not* take into account the possibility that the opponent takes into account the possibility that the player not be cautious & believe in opponent rationality etc

Answer: Strategies surviving the Dekel-Fudenberg procedure (one round of weak elimination followed by iterated strict elimination)

Algorithms

[reasoning in](#page-0-0) games Asheim and

[Caution](#page-1-0) [Algorithms](#page-2-0)

Refinements of the DF procecure

The event that a player is cautious and respect opponent preferences in the sense of deeming one opponent strategy infinitely more likely than another if the opponent is believed to prefer the former over the latter

DF procedure

Iterated admissibility

Proper rationalizability

DF procedure

Iterated admissibility

Proper rationalizability

Outline

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and

[Outline](#page-9-0)

The purpose is to present algorithms for the DF procedure and iterated admissibility that build on the key concepts introduced by Andrés Perea, thereby making such established procedures comparable to the new algorithm for proper rationalizability

- **Concepts:** preference restrictions and likelihood orderings
- **Algorithms for the DF procedure and iterated admissibility**
- \blacksquare Put these algorithms to use:
	- **Offer examples illuminating the differences between iterated** admissability and proper rationalizability
	- **Provide a sufficient condition under which iterated adm.** does not rule out properly rationalizable strategies
	- Use the algorithms to examine an economically relevant strategic situation (bilateral commitment bargaining game)

Preliminaries

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Caution](#page-1-0)

[Concepts](#page-10-0)

Finite strategic two-player game $G = (S_1, S_2, u_1, u_2)$

 i 's preferences over his own strategies are determined by u_i and a lexicographic probability system (LPS) with full support on S_i

An LPS consists of a finite sequence of subj. probability distributions, $\lambda_i=(\lambda_i^1,\ldots,\lambda_i^K)$, where for each $k\in\{1,\ldots,K\},\ \lambda_i^k\in \Delta(\mathcal{S}_j)$ i deems s_j infinitely more likely than s_j' (written $s_j \gg_i s_j')$ if there exists $k \in \{1, \ldots, K\}$ such that

1
$$
\lambda_i^k(s_j) > 0
$$
 and
\n2 $\lambda_i^{k'}(s_j') = 0$ for all $k' \in \{1, ..., k\}$.

It follows that \gg_i is an asymmetric and transitive binary relation

Algorithms for cautious [reasoning in](#page-0-0) games Asheim and Perea

[Concepts](#page-10-0) Preference [restrictions](#page-11-0) Belief

Preference restrictions

Definition (Preference restriction)

A preference restriction on S_i is a pair (s_i, A_i) , where $s_i \in S_i$ and A_i is a nonempty subset of S_i .

 $(\mathsf{s}_i, \mathsf{A}_i)$ means that player i prefers some strategy in A_i to s_i \mathcal{R}_i^* denotes the collection of all sets of preference restrictions

$$
C_i(R_i) := \{ s_i \in S_i \mid \nexists A_i \subseteq S_i \text{ with } (s_i, A_i) \in R_i \}: \text{ choice set}
$$
\n
$$
C_i(R_i') \cap C_i(R_i'') = C_i(R_i' \cup R_i'') \text{ for every } R_i', R_i'' \in R_i^*
$$
\nIn particular,
$$
C_i(R_i') \supseteq C_i(R_i'')
$$
 whenever
$$
R_i' \subseteq R_i''
$$

Algorithms for cautious [reasoning in](#page-0-0) games Asheim and Perea [Caution](#page-1-0)

Likelihood orderings

Definition (Likelihood ordering)

A likelihood ordering on \mathcal{S}_i is an ordered partition $L_i = (L_i^1, L_i^2, \ldots, L_i^K)$ of S_i .

[Concepts](#page-10-0) Preference [Likelihood](#page-12-0) orderings Belief [operators](#page-13-0)

A likelihood ordering $L_i = (L_i^1, L_i^2, \ldots, L_i^K)$ on S_i determines the infinitely-more-likely relation of player i : $s_i \gg_j s'_i$ if and only if $s_i \in L_i^k$ and $s'_i \in L_i^{k'}$ with $k < k'$ \mathcal{L}_i^* denotes the set of all likelihood orderings on \mathcal{S}_i $R_i(\mathcal{L}_j)$ denotes the set of preference restrictions *derived* from \mathcal{L}_j : $R_i(\mathcal{L}_j) := \{ (s_i, A_i) \in S_i \times 2^{S_i} \mid \forall L_j \in \mathcal{L}_j, \exists k \in \{1, \dots, K\} \& \mu_i \in \Delta(A_i) \}$ s.t. s_i is weakly dominated by μ_i on $L^1_j\cup\cdots\cup L^k_j\}$ $R_i(\mathcal{L}'_j) \cap R_i(\mathcal{L}''_j) = R_i(\mathcal{L}'_j \cup \mathcal{L}''_j)$ for every \mathcal{L}'_j , $\mathcal{L}''_j \in \mathcal{L}^*_i$ In particular, $R_i(\mathcal{L}'_j) \supseteq R_i(\mathcal{L}''_j)$ whenever $\mathcal{L}'_j \subseteq \mathcal{L}''_j$

Belief operators

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Concepts](#page-10-0) Preference Belief [operators](#page-13-0)

Likelihood-orderings can be related to the ordinary belief operator as well as the assumption operator (BFK, 2008)

Definition (Believing an event)

For a given subset $A_i \subseteq S_i$,

L_i believes A_i if, for every $\mathsf{s}_i\in \mathsf{S}_i\backslash A_i$, $\mathsf{a}_i\gg_{j} \mathsf{s}_i$ for some $\mathsf{a}_i\in A_i$

Definition (Assuming an event)

For a given subset $A_i \subseteq S_i$,

L_i assumes A_i if, for every $s_i \in S_i \backslash A_i$, a $_i \gg_j s_i$ for every a $_i \in A_i$

Likelihood-orderings can also be related to respect of preferences

Definition (Respecting preferences)

For a given set $R_i \in \mathcal{R}^*_i$ of preference restrictions, L_i respects R_i if, for every $(s_i, A_i) \in R_i$, a $_i \gg_j s_i$ for some a $_i \in A_i$

Notation

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Algorithms](#page-14-0)

 $\mathcal{L}_{i}^{b}(R_{i}):=\{L_{i}\in \mathcal{L}_{i}^{*}\mid L_{i} \text{ believes } C_{i}(R_{i})\}$ $\mathcal{L}_{i}^{a}(R_{i}):=\{L_{i}\in\mathcal{L}_{i}^{*}\mid L_{i} \text{ assumes } C_{i}(R_{i})\}$ $\mathcal{L}_{i}^{r}(R_{i}):=\{L_{i}\in\mathcal{L}_{i}^{*}\mid L_{i} \text{ respects } R_{i}\}$

Observations:

 $\mathcal{L}_i^b(R_i)\supseteq\mathcal{L}_i^a(R_i)\cup\mathcal{L}_i^r(R_i)$ for every $R_i\in\mathcal{R}_i^*$ with $\mathcal{C}_i(R_i)\neq\emptyset$ $\mathcal{L}_i^b(R_i')\cap\mathcal{L}_i^b(R_i'')=\mathcal{L}_i^b(R_i'\cup R_i'')$ for every $R_i',\,R_i''\in\mathcal{R}_i^*$ $\mathcal{L}^{\mathsf{a}}_i(R'_i)\cap\mathcal{L}^{\mathsf{a}}_i(R''_i)\subseteq\mathcal{L}^{\mathsf{a}}_i(R'_i\cup R''_i)$ for every $R'_i,$ $R''_i\in\mathcal{R}^*_i,$ while the inverse inclusion need not hold

 $\mathcal{L}^r_i(R'_i)\cap\mathcal{L}^r_i(R''_i)=\mathcal{L}^r_i(R'_i\cup R''_i)$ for every $R'_i, \, R''_i\in \mathcal{R}^*_i$

Algorithms

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Algorithms](#page-14-0)

Ini For both players *i*, let $R_i^0 = \emptyset$ **DF** For every $n \geq 1$, and both players i, let $R_i^n = R_i(\mathcal{L}_j^b(R_j^{n-1}))$

Proposition

Let G be a finite 2-player strategic game. For both players i, s_i survives the DF procedure if and only if $s_i \in C_i(\bigcup_{n=1}^{\infty} R_i^n)$

 $\binom{n-1}{j}$

IA ..., let $R_i^n = R_i(\mathcal{L}_j^a(R_j^0) \cap \mathcal{L}_j^a(R_j^1) \cap \cdots \cap \mathcal{L}_j^a(R_j^{n-1})$ $\binom{n-1}{j}$

Proposition

Let G be a finite 2-player strategic game. For both players i, s_i survives iterated admissibility if and only if $s_i \in C_i(\bigcup_{n=1}^\infty R_i^n)$

PR For every $n \geq 1$, and both players i, let $R_i^n = R_i(\mathcal{L}_j^r(R_j^{n-1}))$ $\binom{n-1}{j}$

Proposition

Let G be a finite 2-player strategic game. For both players i, s_i is properly rationalizable if and only if $s_i \in C_i(\bigcup_{n=1}^{\infty} R_i^n).$

Applications

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Applications](#page-16-0)

For a given set R_i of preference restrictions on S_i , define the monotonic cover of R_i by

$$
mcR_i := \{ (s_i, A_i) \mid \exists \hat{A}_i \subseteq A_i \text{ with } (s_i, \hat{A}_i) \in R_i \}
$$

Iterated admissibility coincides with proper rationalizability

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Examples](#page-17-0)

Dekel-Fudenberg

 $R_1^0 = \emptyset$ R $b_2^0 = \emptyset$ $R_1^1 = mc\{(D, \{U\})\}$ R $b_2^1 = \emptyset$ $R_1^{\infty} = mc\{(D, \{U\})\}$ R $\frac{1}{2}^{\infty} = \emptyset$

Iterated admissibility coincides with proper rationalizability

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Examples](#page-17-0)

Iterated admissibility and Proper rationalizability

Iterated admissibility rules out properly rationalizable strategies

R

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Examples](#page-17-0)

Dekel-Fudenberg and Proper rationalizability

Iterated admissibility rules out properly rationalizable strategies

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Concepts](#page-10-0)

[Examples](#page-17-0)

Iterated admissibility

 R_1^0 $\frac{1}{1} = \emptyset$ R $b_2^0 = \emptyset$ $R_1^1 = mc\{(D, \{U\})\}$ R $b_2^1 = \emptyset$ $R_1^2 = mc\{(D, \{U\})\}$ R $2^2 = mc\{(R, \{L\})\}$ $R_1^3 = mc\{(M, \{U\}), (M, \{D\}), (D, \{U\})\}$ $R_2^3 = mc\{(R, \{L\})\}$ $R_1^{\infty} = mc \{ (M, \{U\}), (M, \{D\}), (D, \{U\}) \} R_2^{\infty} = mc \{ (R, \{L\}) \}$

A four-legged centipede game

[Examples](#page-17-0)

Dekel-Fudenberg

 $R_1^0 = \emptyset$ R $R_1^1 = \emptyset$ R $R_1^2 = mc\{ (FF, {D, FD}) \}$ R

 $R_1^{\infty} = mc\{(FF, \{D, FD\})\}$ R

 $b_2^0 = \emptyset$ $p_2^1 = mc \{ (f f, \{f d\}) \}$ $2^2 = mc({\{f\}, {\{f d\}}})$

 $\mathbb{R}_{2}^{\infty} = mc \{ (f f, \{f d\}) \}$

A four-legged centipede game

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Examples](#page-17-0)

 $1 \quad 2 \quad 1 \quad 2 \quad 6$ $F \mid f \mid F \mid f \mid 4$ D d D d 2 1 4 3 0 3 2 5 d fd ff D FD FF 2, 0 | 2, $1, 3 \mid 4, 2$ $3 \mid 3, 5 \mid 6,$

Iterated admissibility and Proper rationalizability

 R_1^0 $\frac{1}{1} = \emptyset$ $b_2^0 = \emptyset$ R_1^1 $\frac{1}{1} = \emptyset$ $n_2^1 = mc \{ (f f, \{f d\}) \}$ $R_1^2 = mc\{(FF, \{FD\})\}$ R $m_2^2 = mc\{(ff, \{fd\})\}$ $R_1^3 = mc\{(FF, \{FD\})\}$ R $S_2^3 = mc{(fd, {d}),(ff, {d})}$ $R_1^4 = mc\{(FD, {D}\}, (FF, {D}\}, (FF, {FD})\}$ R $a_2^4 = mc{(fd, {d}),(ff, {d})}$ $R_1^{\infty} = mc\{(FD, {D}), (FF, {D}), (FF, {FD})\}$ $R_2^{\infty} = mc\{(fd, {d}), (ff, {d})\}$

A sufficient condition

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and Perea

[Caution](#page-1-0)

[Concepts](#page-10-0)

[A sufficient](#page-23-0) condition

Proposition

Consider a finite 2-player strategic game G where the procedure of iterated admissibility leads to the sequence $\langle S_1^n, S_2^n\rangle_{n=0}^\infty$ of surviving strategy sets.

Suppose that there exists a sequence $\langle A_1^n,A_2^n\rangle_{n=0}^\infty$ of strategy sets satisfying, for both players i, $A_i^0 = S_i$ and for each $n \in \mathbb{N}$,

$$
\blacksquare A_i^n \subseteq S_i^n,
$$

if $S_i^n \neq S_i^{n-1}$ \mathcal{S}_i^{n-1} , then, for every $s_i \in S_i \backslash S_i^n$, s_i is weakly dom. by every $a_i \in A_i^n$ on either $(A_j^{n-1}$ and $S_j^{n-1})$ or S_j ,

$$
\text{ if } S_i^n = S_i^{n-1}, \text{ then } A_i^n = A_i^{n-1}.
$$

Then, for both players i, if s_i is properly rationalizable, then $s_i \in \bigcap_{n=1}^{\infty} S_i^n$.

A bilateral commitment bargaining game Ellingsen & Miettinen, Commitment & conflict in bilateral bargaining, AER2008

Algorithms for cautious [reasoning in](#page-0-0) games

Asheim and

[Commitment](#page-24-0) bargaining

Proposition

Consider the finite version of Ellingsen and Miettinen's (2008, Section I) bilateral commitment bargaining game with zero commitment cost. The properly rationalizable strategies for each player is to commit to the whole surplus, i.e., to choose the strategy k, or to wait, i.e., to choose the strategy w.

In all variants considered by Ellingsen and Miettinen (2008), proper rationalizability (and proper equilibrium) yield the outcomes they point to in their propositions, while other concepts do not.