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Caution

A player is cautious

if he/she takes into account all opponent strategies,

if he/she prefers one strategy over another
whenever the former weakly dominates the latter

Question: What strategies can be best responses

if each player is cautious & believes in opponent rationality

if each player does not take into account the possibility the
opponent not be cautious & believe in opponent rationality

if each player does not take into account the possibility that
the opponent takes into account the possibility that the
player not be cautious & believe in opponent rationality

etc

Answer: Strategies surviving the Dekel-Fudenberg procedure
(one round of weak elimination followed by iterated strict elimination)
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Refinements of the DF procecure

Epistemic
Concept Algorithm foundation

DF procedure Dekel & Brandenburger (1992)
Fudenberg (1990) Börgers (1994)

Iterated 1950s BFK (2008)
admissibility

Proper Perea (2008) Schuhmacher (1999)
rationalizability Asheim (2001)

The event that a player is cautious and respect opponent preferences in
the sense of deeming one opponent strategy infinitely more likely than
another if the opponent is believed to prefer the former over the latter
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Iterated admissibility
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Proper rationalizability
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Outline

The purpose is to present algorithms for the DF procedure and
iterated admissibility that build on the key concepts introduced
by Andrés Perea, thereby making such established procedures
comparable to the new algorithm for proper rationalizability

Concepts: preference restrictions and likelihood orderings

Algorithms for the DF procedure and iterated admissibility

Put these algorithms to use:

Offer examples illuminating the differences between iterated
admissability and proper rationalizability
Provide a sufficient condition under which iterated adm.
does not rule out properly rationalizable strategies
Use the algorithms to examine an economically relevant
strategic situation (bilateral commitment bargaining game)
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Preliminaries

Finite strategic two-player game G = (S1,S2, u1, u2)

i ’s preferences over his own strategies are determined by ui and a
lexicographic probability system (LPS) with full support on Sj

An LPS consists of a finite sequence of subj. probability distributions,

λi = (λ1
i , . . . , λ

K
i ), where for each k ∈ {1, . . . ,K}, λk

i ∈ ∆(Sj)

i deems sj infinitely more likely than s ′j (written sj �i s ′j ) if there
exists k ∈ {1, . . . ,K} such that

1 λk
i (sj) > 0 and

2 λk ′
i (s ′j ) = 0 for all k ′ ∈ {1, . . . , k}.

It follows that �i is an asymmetric and transitive binary relation
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Preference restrictions

Definition (Preference restriction)

A preference restriction on Si is a pair (si ,Ai ),
where si ∈ Si and Ai is a nonempty subset of Si .

(si ,Ai ) means that player i prefers some strategy in Ai to si

R∗
i denotes the collection of all sets of preference restrictions

Ci (Ri ) := {si ∈ Si | @Ai ⊆ Si with (si ,Ai ) ∈ Ri}: choice set

Ci (R
′
i ) ∩ Ci (R

′′
i ) = Ci (R

′
i ∪ R ′′

i ) for every R ′
i , R ′′

i ∈ R∗
i

In particular, Ci (R
′
i ) ⊇ Ci (R

′′
i ) whenever R ′

i ⊆ R ′′
i
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Likelihood orderings

Definition (Likelihood ordering)

A likelihood ordering on Si is an ordered partition
Li = (L1

i , L
2
i , . . . , L

K
i ) of Si .

A likelihood ordering Li = (L1
i , L

2
i , . . . , L

K
i ) on Si determines the

infinitely-more-likely relation of player j :
si �j s ′i if and only if si ∈ Lk

i and s ′i ∈ Lk ′
i with k < k ′

L∗i denotes the set of all likelihood orderings on Si

Ri (Lj) denotes the set of preference restrictions derived from Lj :

Ri (Lj) := {(si ,Ai ) ∈ Si × 2Si | ∀Lj ∈ Lj ,∃k ∈ {1, . . . ,K} & µi ∈ ∆(Ai )

s.t. si is weakly dominated by µi on L1
j ∪ · · · ∪ Lk

j }

Ri (L′j) ∩ Ri (L′′j ) = Ri (L′j ∪ L′′j ) for every L′j , L′′j ∈ L∗i
In particular, Ri (L′j) ⊇ Ri (L′′j ) whenever L′j ⊆ L′′j
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Belief operators

Likelihood-orderings can be related to the ordinary belief
operator as well as the assumption operator (BFK, 2008)

Definition (Believing an event)

For a given subset Ai ⊆ Si ,
Li believes Ai if, for every si ∈ Si\Ai , ai �j si for some ai ∈ Ai

Definition (Assuming an event)

For a given subset Ai ⊆ Si ,
Li assumes Ai if, for every si ∈ Si\Ai , ai �j si for every ai ∈ Ai

Likelihood-orderings can also be related to respect of preferences

Definition (Respecting preferences)

For a given set Ri ∈ R∗
i of preference restrictions,

Li respects Ri if, for every (si ,Ai ) ∈ Ri , ai �j si for some ai ∈ Ai
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Notation

Lb
i (Ri ) := {Li ∈ L∗i | Li believes Ci (Ri )}

La
i (Ri ) := {Li ∈ L∗i | Li assumes Ci (Ri )}

Lr
i (Ri ) := {Li ∈ L∗i | Li respects Ri}

Observations:

Lb
i (Ri ) ⊇ La

i (Ri ) ∪ Lr
i (Ri ) for every Ri ∈ R∗

i with Ci (Ri ) 6= ∅

Lb
i (R

′
i ) ∩ Lb

i (R
′′
i ) = Lb

i (R
′
i ∪ R ′′

i ) for every R ′
i , R ′′

i ∈ R∗
i

La
i (R

′
i ) ∩ La

i (R
′′
i ) ⊆ La

i (R
′
i ∪ R ′′

i ) for every R ′
i , R ′′

i ∈ R∗
i ,

while the inverse inclusion need not hold

Lr
i (R

′
i ) ∩ Lr

i (R
′′
i ) = Lr

i (R
′
i ∪ R ′′

i ) for every R ′
i , R ′′

i ∈ R∗
i
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Ini For both players i , let R0
i = ∅

DF For every n ≥ 1, and both players i , let Rn
i = Ri (Lb

j (R
n−1
j ))

Proposition

Let G be a finite 2-player strategic game. For both players i ,
si survives the DF procedure if and only if si ∈ Ci (

⋃∞
n=1 Rn

i )

IA . . . , let Rn
i = Ri

(
La

j (R
0
j ) ∩ La

j (R
1
j ) ∩ · · · ∩ La

j (R
n−1
j )

)
Proposition

Let G be a finite 2-player strategic game. For both players i ,
si survives iterated admissibility if and only if si ∈ Ci (

⋃∞
n=1 Rn

i )

PR For every n ≥ 1, and both players i , let Rn
i = Ri (Lr

j (R
n−1
j ))

Proposition

Let G be a finite 2-player strategic game. For both players i ,
si is properly rationalizable if and only if si ∈ Ci (

⋃∞
n=1 Rn

i ).
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For a given set Ri of preference restrictions on Si ,
define the monotonic cover of Ri by

mcRi := {(si ,Ai ) | ∃Âi ⊆ Ai with (si , Âi ) ∈ Ri}
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proper rationalizability
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Dekel-Fudenberg

R0
1 = ∅ R0

2 = ∅
R1

1 = mc{(D, {U})} R1
2 = ∅

. . . . . .

R∞1 = mc{(D, {U})} R∞2 = ∅
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Iterated admissibility and Proper rationalizability

R0
1 = ∅ R0

2 = ∅
R1

1 = mc{(D, {U})} R1
2 = ∅

R2
1 = mc{(D, {U})} R2

2 = mc{(R, {L})}
R3

1 = mc{(M, {U}), (M, {D}), (D, {U})} R3
2 = mc{(R, {L})}

. . . . . .

R∞1 = mc{(M, {U}), (M, {D}), (D, {U})} R∞2 = mc{(R, {L})}
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Dekel-Fudenberg and Proper rationalizability
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Iterated admissibility rules out
properly rationalizable strategies
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Iterated admissibility

R0
1 = ∅ R0

2 = ∅
R1

1 = mc{(D, {U})} R1
2 = ∅

R2
1 = mc{(D, {U})} R2

2 = mc{(R, {L})}
R3

1 = mc{(M, {U}), (M, {D}), (D, {U})} R3
2 = mc{(R, {L})}

. . . . . .

R∞1 = mc{(M, {U}), (M, {D}), (D, {U})}R∞2 = mc{(R, {L})}
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A four-legged centipede game

1 2 1 2 6
F f F f 4

D d D d

2 1 4 3
0 3 2 5

d fd ff

D

FD

FF

2, 0 2, 0 2, 0

1, 3 4, 2 4, 2

1, 3 3, 5 6, 4

Dekel-Fudenberg

R0
1 = ∅ R0

2 = ∅
R1

1 = ∅ R1
2 = mc{(ff, {fd})}

R2
1 = mc{(FF, {D,FD})} R2

2 = mc{(ff, {fd})}
. . . . . .

R∞1 = mc{(FF, {D,FD})} R∞2 = mc{(ff, {fd})}
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A four-legged centipede game

1 2 1 2 6
F f F f 4

D d D d

2 1 4 3
0 3 2 5

d fd ff

D

FD

FF

2, 0 2, 0 2, 0

1, 3 4, 2 4, 2

1, 3 3, 5 6, 4

Iterated admissibility and Proper rationalizability

R0
1 = ∅ R0

2 = ∅
R1

1 = ∅ R1
2 = mc{(ff, {fd})}

R2
1 = mc{(FF, {FD})} R2

2 = mc{(ff, {fd})}
R3

1 = mc{(FF, {FD})} R3
2 = mc{(fd, {d}), (ff, {d}), (ff, {fd})}

R4
1 = mc{(FD,{D}),(FF,{D}),(FF,{FD})} R4

2 = mc{(fd, {d}), (ff, {d}), (ff, {fd})}
. . . . . .

R∞1 = mc{(FD,{D}),(FF,{D}),(FF,{FD})} R∞2 = mc{(fd, {d}), (ff, {d}), (ff, {fd})}
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A sufficient condition

Proposition

Consider a finite 2-player strategic game G where the procedure
of iterated admissibility leads to the sequence 〈Sn

1 ,Sn
2 〉∞n=0 of

surviving strategy sets.
Suppose that there exists a sequence 〈An

1,A
n
2〉∞n=0 of strategy

sets satisfying, for both players i , A0
i = Si and for each n ∈ N,

An
i ⊆ Sn

i ,

if Sn
i 6= Sn−1

i , then, for every si ∈ Si\Sn
i , si is weakly dom.

by every ai ∈ An
i on either (An−1

j and Sn−1
j ) or Sj ,

if Sn
i = Sn−1

i , then An
i = An−1

i .

Then, for both players i , if si is properly rationalizable,
then si ∈

⋂∞
n=1 Sn

i .
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A bilateral commitment bargaining game
Ellingsen & Miettinen, Commitment & conflict in bilateral bargaining, AER2008

Proposition

Consider the finite version of Ellingsen and Miettinen’s (2008,
Section I) bilateral commitment bargaining game with zero
commitment cost. The properly rationalizable strategies for each
player is to commit to the whole surplus, i.e., to choose the
strategy k, or to wait, i.e., to choose the strategy w.

In all variants considered by Ellingsen and Miettinen (2008),
proper rationalizability (and proper equilibrium) yield the
outcomes they point to in their propositions,
while other concepts do not.
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