Long-run Negotiations with Dynamic Accumulation

> by Francesca Flamini University of Glasgow

> > **LCCC 2010**

The Dynamic Problem

- Two parties can share a surplus between investment and consumption: how much do they invest? How do they split the residual surplus among themselves?
- *Dynamic accumulation: the level of investment affects the future capital stock and consequently, the surplus available in the following bargaining stage*.
- Examples: partners in a business; trade talks, negotiations on climate change.

Literature Two major strands: ■ **Hold-up problem** (e.g., Gibbons (1992), Muthoo (1996), Gul (2001)). Typically, only one party is involved in the investment problem, moreover, the investment is once for all.

LCCC 2010 \sim 3 **Differently, we look at problem where** parties *jointly* and *repeatedly* need to decide how much to invest and consume.

Literature

 Tragedy of the commons (e.g., Levhari and Mirman (1980), Dutta and Sandaram (1993)) Common-property resource games. **The typical framework does not include any** negotiations.

Exceptions: Houba et al. (2000) and Sorger (2006), which introduce bargaining in a simplified manner.

LCCC 2010

Literature

Muthoo (1999, sec. 10.3): first to consider a repeated (non-cooperative) bargaining model with investment decisions in addition to the standard consumption decisions.

- Focus is on *steady-state SPE*. Infinite number of surpluses of the same size (Muthoo, 1995).
- Given the 'simple' investment problem, parties can be risk neutral.

Outline

The Model

- Alternating stages: Production and Bargaining \blacksquare Time is discrete, $t = 0, 1, 2, ...$
- **P**roduction: surplus is given by $F(k_t) = Gk_t$, given k_0 and $G > 0$. Production takes time (τ) .
- *Bargaining*: Two players: 1 and 2. Alternating-offer procedure á la Rubinstein (1982).
	- A proposal by Player i is a pair $({}_i x_t, _i I_t)$:
	- I_t = investment level,
	- i_ix_t = share demanded by *i* over the residual surplus.

After an acceptance

 \blacksquare If the proposal is accepted, the bargaining stage ends, per-period utilities:

 $LCCC 2010$ 8 where ${}_{i}c_{t} = (F(k_{t}) - {}_{i}I_{t})_{i}x_{t}$ and ${}_{j}c_{t} = (F(k_{t}) - {}_{i}I_{t})(1 - {}_{i}x_{t}).$ ■ Output at t+1 is $F(k_{t+1}),$ with $k_{t+1} = I_t + (1-\lambda)k_t$, where λ is the depreciation rate $(0 \le \lambda \le 1)$.

After a rejection

If the proposal is rejected a time period, \triangle passes accepted. **Discount factors:** $i = \exp(-h_i \Delta)$ $\mathbf{r}_i = \exp(-\mathbf{h}_i \tau)$ where h_i is player i's rate of time preference.

Example of a possible time line

LCCC 2010 10 Figure 1. Time line for a game with n (0) rejections in the first (second, respectively) bargaining stage.

Equilibrium

 Stationary *Markov Subgame Perfect Equilibra* (MPE). State variable: k_t . \blacksquare Natural candidate: linear strategies: x_i and ϕ_i $=$ _iI_t/ k _t are constant. Why? ■ Asymptotic approach (number of bargaining stages is finite but tends to infinity).

Results: Characterisation of the MPE

- There is a unique MPE with immediate agreement But three possible types of MPE:
- *At least* one player consumes all the residual surplus, $x_i = 1$ (Ultimatum-like MPE).
- B*oth* demands are less than 1.
- In a frictionless bargaining game, symmetric players behave efficiently.
- Typically, they either under-invest (for η < 1) or over-invest (for $\eta > 1$).

Results: Effects in a Dynamic Framework

■ The more patient party consumes *less* than his opponent, if production is sufficiently long. The more patient a party is the higher the investment plan of *all* parties. Patience can make the rival better off. Note on log utility, generally the MPE strategies are time-dependent. Time-invariant rules can be derived only at the steady-state or at the limit for $\Delta \rightarrow 0$.

The Recursive Problem

(1)
$$
V_i(k_t) = \max_{\substack{0 \le x_i \le 1 \\ - (1-\lambda) \le \varphi_i \le G}} \frac{[x_i(G - \varphi_i)k_t]^{1-\eta}}{1-\eta} + \alpha_i W_i(k_{t+1})
$$

\ns.t.

\n(2) $W_j(k_t) = \frac{[(1 - x_i)(G - \varphi_i)k_t]^{1-\eta}}{1-\eta} + \alpha_j V_j(k_{t+1}) \ge \delta_j V_j(k_t)$

where

I

LCCC 2010 **14** where

(3) $k_{t+1} = k_t (1 - \lambda + \varphi_i)$ in case of acceptance, for $i \neq j$, and $\overline{\big| i,j=1,2. \big|}$

Guesses

I

$$
V_i(k_t) = \phi_i \frac{k_t^{1-\eta}}{1-\eta}
$$

$$
W_i(k_t) = \mu_i \frac{k_t^{1-\eta}}{1-\eta}
$$

Ultimatum-like MPE

F Focus on η <1. Let $l = G+1-\lambda$

Result 1. For η >1/2, if $\delta \leq (al^{1-\eta})^{1/(2\eta-1)} < 1$, there is a unique MPE in which the proposers consume all the residual surplus and $\partial_i + (1 - \lambda) = l \alpha^{2} \frac{1}{2\eta - 1}$

LCCC 2010 **16** e.g., for $\eta=2/3$, $\delta_i=0.9$, $\alpha_i=0.8$, then $l\in[1.76,1.95)$

Ultimatum-like MPE

N When η is sufficiently high, parties prioritise investment.

The more patient a party is, the higher the investment plan of *all* parties. 1 $\varphi_i + (1 - \lambda) = l(\alpha_i^n \alpha_i^{1 - \eta})^{2} \overline{2\eta - 1}$

better off $(\mu_j$ and ϕ_j increase with α_i). A more patient party makes the opponent

Asymmetric Ultimatum-like MPE

Result 2. If player *i* is sufficiently more patient than *j*, then only player *i* can demand an extreme share $(x_i=1)$.

Interior MPE

Result 3. There is a unique MPE:

$$
x_i = 1/(1 + m_i^{1/\eta})
$$

$$
\phi_i = G\text{-}\text{ } \textit{l}(1+m_i^{1/\eta})/\psi_i
$$

where $(m_i, \psi_i) \in M_i$ and solves a highly nonlinear system.

LCCC 2010 19

Properties in a simple case

Symmetry (h_i=h) and $\eta = \frac{1}{2}$.

Result 4. For $\eta = 1/2$ and $h_i=h$, with $i=1,2$, if $\alpha^2 l$ <1, there is a unique symmetric MPE, players under-invest, unless $\Delta \rightarrow 0$.

LCCC 2010 20 **Result 5.** The MPE demand x is decreasing with δ and increasing with α , while the SPE investment φ is increasing in both δ and α .

Properties in a simple case

Result 6. The more patient parties are, the higher the investment plan. However, the cost of a higher investment when *only* δ increases is paid mainly by the proposer (the responder increases his consumption level).

Properties for asymmetric parties

Result 7. For η < 1,

Investment: the more patient party invests shares larger than his opponent's. The more patient a party becomes, the higher the investment plans of all parties. (imp. of $\alpha_i - \alpha_j$) Consumption: the more patient party consumes more than his opponent, unless *l* is sufficiently large and production is sufficiently long.

Asymmetries

LCCC 2010 23 Table 1. For $\eta = 1/2$ and *l*=0.7, MPE proposals first for *i* (x_i , r_i), then for *j*, with $r_i=1-\lambda+\varphi_i$

LCCC 2010 24 Fig. 2 MPE strategies for $\eta = 1/2$, $\alpha_i = 0.5$, $\alpha_j = 0.7$, $\delta_i = 0.9$, and $\delta_i = 0.95$.

Properties for asymmetric parties

Result 8. For $\eta > 1$, players consume less than half of the residual surplus (unless there are strong asymmetries). The most patient player invests *less* than his rival and demands to consume a larger share (unless production is long and *l* is sufficiently small).

Table 2. For $\eta = 2$, $l = 1.5$ equilibrium as described in table 1.

Efficiency

Frictionless bargaining is efficient. For $\eta > 1$, impatient parties over-invest. Example: For $\delta = 0.99$, $\alpha = 0.9$, $\eta = 2$, $l = 1.5$ i_{i}^{E} =1.162 < 1.183 = φ_{i} investment when δ = 0.93, ceteris paribus).

Patience can be weakness

 Assume that player *j* is more patient than *i*, production is sufficiently long and *η* is sufficiently large, then

Result 9. Patience can make a rival better off.

Table 3. MPE proposal (ϕ and μ), related to player i and j respectively for asymmetric cases.

Random-proposer procedure

Results above are robust.

Result 10. For η < 1, if player *i* is more impatient than player *j* and the probability of proposing for player *i* increases then player *j*′s level of investment decreases while player *i*'s increases (vice-versa for $\eta > 1$)

Conclusion

 Extreme demands are possible in a dynamic framework.

The most patient party demands a larger share of the residual surplus, unless production is sufficiently long.

 \blacksquare Moreover, he will invests more only if η <1.

Bargaining is efficient only in a frictionless world, otherwise parties may either over- or under-invest.

 $LCCC 2010$ 33 Patience can be weakness.