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Playing games?

Rock Scissors Paper
Rock ((0,0) (1-1) (-1

Scissors | (-11) (0,00 (1L-1
Paper (-1 (-1 (0,0),
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Playing games?

and skills

1) Earthquake or eruption occurs
2) Nodes detect seismic event

3) Each node sends event report
to base station

GPS receiver
for time sync

Base station FreeWave

at observatory o Long-distance radio modem
” radio link (4km)
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BAE SYSTEMS

Playing games?

Time: 145 Score: 99.246384

Interval = ———— [v] Animaition
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Playing games?
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Dense deployment | fo. & =, %
of sensors to detect —

pedestrian and
vehicle activity
within an urban
environment.

1
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Learning in games

« Adapt to observations of past play
* Hope to converge to something "good”
* Why?!
— Bounded rationality justification of equilibrium

— Robust to behaviour of “opponents”
— Language to describe distributed optimisation
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Notation

» Players 1 {l,...,N}

- Discrete action sets A

- Joint action set A=A x---x Ay
» Reward functions I, : A >R

» Mixed strategies 7, € Ai = A(A)
* Joint mixed strategy space A=A; x---x Ay
» Reward functions extendto I :A —>R
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.
Best response / Equilibrium

* Mixed strategies of all players other than i Is
T_;

* Best response of player i is
b, (7r_;) = argmaxr, (r;, 7_;)

7Tj EAi

 An equilibriumis a s satisfying, for all 1,
m b (7)
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Fictitious play

Estimate
Game matrix  strategies of
other players

Select best
action given
estimates

\

Update estimates
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Belief updates

» Belief about strategy of player I Is the MLE

K (&)
t

o; (&) =

* Online updating

o eoc+1§(c) -0 s

"
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Stochastic approximation

* Processes of the form

Xt+1 = Xt +ﬂt+1 Ig(xt) T Mt+1 +et+1

where E(M, ;| X,)=0 and ¢ —0
* Fis set-valued (convex and u.s.c.)

* Limit points are chain-recurrent sets of the
differential inclusion

X e F(X)
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N eaE svsTEMS
Best-response dynamics

* Fictitious play has M and e identically O, and
A=t

* Limit points are limit points of the best-
response differential inclusion

7 eb(x)

* In potential games (and zero-sum games and
some others) the limit points must be Nash
equilibria
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== eneralised weakened fictitious play

* Bring back non-zero M and e
* Any process such that

t t—1 t t t—1 t—1 t.
ceco +1 Jd“" (c7)—0c +M

where ' =0, 1 —0 and Z/”Lt = o0
and also an interplay between 4 and M.
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Fictitious play

Estimate
Game matrix  strategies of
other players

Select best
action given
estimates

\

Update estimates
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Learning the game

Rock Scissors Paper
Rock (2.8 (?.8) (7.8

Scissors | (7,8 (7.8 (2.8
Paper ((2% (2% (2.®)

R =r(a")+€
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. .
Reinforcement learning

* Track the average reward for each joint
action

* Play each joint action frequently enough
« Estimates will be close to the expected value

« Estimated game converges to the true game
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Q-learned fictitious play

Estimate
Game matrix  strategies of
other players

Estimated
game matrix

Select best Select best
action given action given
estimates estimates

Update estimates
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Theoretical result

Theorem — If all joint actions are played
infinitely often then beliefs follow a GWFP

Proof. The estimated game converges to the
true game, so selected strategies are e-best
responses.
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Claus and Boutilier

« Claus and Boutilier (1998) state a similar
result

* |t is restricted to team games
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Playing games?

(A &7 i
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Dense deployment | fo. & =, %
of sensors to detect —

pedestrian and
vehicle activity
within an urban
environment.
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It's impossible!

ch with A actions
tries to learn

* Each individual m tegy of

every other individual

 It's just not possible for realistic game
scenarios
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Marginal contributions

« Marginal contribution of player I Is
total system reward — system reward If | absent

* Maximised marginal contributions implies
system is at a (local) optimum

« Marginal contribution might depend only on

the actions of a small number of neighbours
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Sensors — rewards

 Global reward for action a Is

Ug(a): E leisobserved = E SZ(_Unj(a)j
) —

eventsy _ event j
andobservatio — -

« Marginal reward for i Is
n;(a)- n.(a) )
r(@)=U,(@-U,a)= E| Y €@ —p"®

events jobserved 1
_byi

(aty Aty
R-tZ Zenj(a)l_nnj(a)

* Actually use

-

jobserved
by
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Marginal contributions

| Ux; (@)

N e

Utility

l_ _____ =
T T — —
0 1 2 3 4 5
Number agents observing event x;
Ay = [ University of
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4 B BRISTOL

autonomous learning agents for decentralised data and information networks



Graphical games
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Local learning

Estimate
Game matrix  strategies of
other players

Estimated
game matrix

Select best Select best
action given action given
estimates estimates

Update estimates
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Local learning

Estimate Estimated

Game matrix  strategies of =~ game matrix
neighbours for local

/\inte);tions

Select best Select best
action given action given
estimates estimates

i

Update estimates
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Theoretical result

Theorem — If all joint actions of local games
are played infinitely often then beliefs follow a
GWFP

Proof. The estimated game converges to the
true game, so selected strategies are ¢-best
responses.
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Sensing results
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So what?!

* Play converges to (local) optimum with only
noisy information and local communication

* An Individual always chooses an action to
maximise expected reward given information

 If an individual doesn’t “play cricket”, the
other individuals will reach an optimal point
conditional on the behaviour of the itinerant
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Summary

* Learning the game while playing is essential

 This can be accommodated within the GWFP
framework

» Exploiting the neighbourhood structure of
marginal contributions is essential for
feasiblility
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