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Motivation

Distributed control and estimation in networks of systems

Information and processing power is distributed among
cooperating agents

Global objective through local computations and interaction

Design is local (on-line) as opposed to global (off-line)
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Online Optimization-based Multi-agent Coordination

1. Formulate an optimization problem for each agent that reflects
the global objectives.
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Online Optimization-based Multi-agent Coordination

1. Formulate an optimization problem for each agent that reflects
the global objectives.

2. Incorporate local knowledge, exchange information locally.
(cost function, models, constraints, neighboring states or
measurements)

3. Solve and implement repeatedly.
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Examples - 1

[Keviczky et al, 2004, 2006]
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Examples - 2

[Keviczky et al, 2008]

Workshop on Multi-Agent Coordination and Estimation, Lund, Sweden 5



Examples - 3

Moving agents to maximize λ2 of a state-dependent graph
Laplacian L.

max
x

γ

subject to ‖xi − xj‖2 ≥ ρ

P⊤L(x)P ≥ γIN−1

where P is the matrix of orthonormal basis vectors spanning
the subspace 1⊥ = {x ∈ R

N |1⊤x = 0}.
Iterative SDP approach using discretization and linearization
of state-dependent Laplacian entries.

[Kim - Mesbahi, 2006]
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Examples - 3
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[Simonetto - Keviczky, 2010]

Workshop on Multi-Agent Coordination and Estimation, Lund, Sweden 7



Typical Issues

These practical results are attractive, yet...

decomposition is mostly ad-hoc
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Typical Issues

These practical results are attractive, yet...

decomposition is mostly ad-hoc

no a priori guarantees on performance

analysis is performed a posteriori

design assumptions often very conservative

Objective

Development of systematic design tools to distribute and
coordinate the global optimization problem among agents.
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Decomposition Methods for Distributed Optimization

See in Stephen Boyd’s talk...

Primal decomposition

Dual decomposition
(Lagrangian relaxation)

Penalty function method

Proximal point method
(Augmented Lagrangian)

Auxiliary problem principle
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Desiderata for

Decomposition and Coordination Mechanisms

Arbitrary connected (time-varying, delayed) communication
graph.
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Desiderata for

Decomposition and Coordination Mechanisms

Arbitrary connected (time-varying, delayed) communication
graph.

Finite number of coordinating iterations (a priori tunable).
(Rate analysis for real-time implementation.)

Pre-specified distance from optimality.
(Bounded suboptimality.)

Approximate primal solutions from dual decomposition.
(Primal feasibility of each iterate.)

Distributed, on-line testing of termination criteria.
(With a priori complexity bound.)

Heterogeneous subsystems and constraints.

Non-convex coupling constraints.
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Simplified Problem Formulation

minimize
x

f (x) =
N∑

i=1

fi(x)

subject to x ∈ X ,

fi : R
M → R nondifferentiable convex functions.

X ⊆ R
M nonempty, closed, and convex set.

Computations should be performed in a distributed fashion.
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Simplified Problem Formulation

minimize
x

f (x) =
N∑

i=1

fi(x)

subject to x ∈ X ,

fi : R
M → R nondifferentiable convex functions.

X ⊆ R
M nonempty, closed, and convex set.

Computations should be performed in a distributed fashion.

Information exchange is only allowed through edges of an
N-node undirected graph G = (V, E).
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Combined Consensus/Subgradient Scheme

Goal is to use agreement protocols to relax communication
constraints in distributed optimization schemes.

Modified subgradient iterations

x
(k+1)
i = PX




N∑

j=1

[W ϕ]ij

(
x

(k)
j − α(k)gj(x

(k)
j )

)




with W = I − εL(G) Perron matrix corresponding to the
communication graph.

[Johansson et al., 2008]
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Main Iterations of the Algorithm

1. Perform local subgradient update on local variable xi .
(This is done in parallel for all nodes.)

2. Do ϕ consensus iterations with neighbors.
(Can be interpreted as enforcing approximate equality
constraints with neighboring variables.)

3. Repeat.

Workshop on Multi-Agent Coordination and Estimation, Lund, Sweden 13



Convergence Analysis

Establish a lower bound on the number of consensus steps ϕ

that will ensure that the local variables will remain in a ball of
radius β(k) of their average, from one iteration to the next.

β(k) = δ(k)β0, δ(k) ≥ δ(k+1),
δ(k+1)

δ(k)
≥ µ

ϕ ≥ log(µβ0) − log(4M
√

N(β0 + α0C ))

log(γ)
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Convergence Analysis

Establish a lower bound on the number of consensus steps ϕ

that will ensure that the local variables will remain in a ball of
radius β(k) of their average, from one iteration to the next.

β(k) = δ(k)β0, δ(k) ≥ δ(k+1),
δ(k+1)

δ(k)
≥ µ

ϕ ≥ log(µβ0) − log(4M
√

N(β0 + α0C ))

log(γ)

This bound does not depend on k!
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Convergence Analysis

Establish a lower bound on the number of consensus steps ϕ

that will ensure that the local variables will remain in a ball of
radius β(k) of their average, from one iteration to the next.

β(k) = δ(k)β0, δ(k) ≥ δ(k+1),
δ(k+1)

δ(k)
≥ µ

Consensus

Iterations

Use approximate subgradient at the average value to account
for different local subgradients.
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Subgradient and ǫ-subgradient

Definition

h is a subgradient for f at x if h ∈ ∂f (x).

∂f (x) =
{
g ∈ R

M |f (y)≥ f (x) + g⊺(y − x),∀y ∈ R
M
}
.

Definition

h is an ǫ-subgradient for f at x if h ∈ ∂ǫf (x).

∂ǫf (x) =
{
g ∈ R

M |f (y)≥ f (x) + g⊺(y − x) − ǫ,∀y ∈ R
M
}
.

Workshop on Multi-Agent Coordination and Estimation, Lund, Sweden 15



Convergence Result

Theorem (unconstrained case)

Under appropriate assumptions, the sequence {x(k)
1 , ..., x

(k)
N }∞k=0

generated by the combined SG/consensus update with ϕ consensus

iterations and
∥∥∥x

(0)
i − x̄0

∥∥∥ ≤ β(0), β(k) = δ(k)β0, α(k) = δ(k)α0,
∑∞

k=0 α(k) = ∞ converges to the set of optimizers:

lim
k→∞

distX ⋆+Bη

(
x

(k)
i

)
= 0, ∀i = 1, ...,N,

with

η = lim
k→∞

(
NCα(k) + β(k)

)
+ max

x∈Xa

distX ⋆(x),

a = lim
k→∞

(
NC 2

2
α(k) + 2Nβ(k)C

)
.

[Johansson et al., 2010]
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Distributed optimization for separable problems.
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Key Points, Remarks

Distributed optimization for separable problems.

Use combination of

local subgradient updates
consensus iterations

to relax information exchange assumptions.

Convergence analysis (unconstrained, constrained) using
approximate subgradients.

Closeness of iterates can be determined a priori.

Trade-off between number of consensus steps and
suboptimality for fixed stepsize.

Convergence to optimal solution set with diminishing
stepsizes.

There are convergence results also for time-varying graphs and
different local constraint sets (Nedic-Ozdaglar).
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Illustration - Numerical Example

Finite-time optimal rendezvous problem with three double
integrator agents.

Consensus matrix:

W =




0.75 0.25 0
0.25 0.5 0.25
0 0.25 0.75





Workshop on Multi-Agent Coordination and Estimation, Lund, Sweden 18



Illustration - Numerical Example
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Receding Horizon Implementation:

Optimal Rendezvous Example

Consider N dynamic agents

x i
t+1 = Aix i

t + B iui
t ,

y i
t = C ix i

t

Polyhedral constraints

x i
t ∈ X i , ui

t ∈ U i , t ≥ 0

Finite-time rendezvous

y i
T+k = θ, ∀k ≥ 0, i = 1, . . . ,N,

ui
T+k = ui

T , ∀k ≥ 0, i = 1, . . . ,N
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Finite-Time Optimal Rendezvous (FTOR)

Problem Formulation

Each agent has nontrivial, constrained LTI dynamics

The rendezvous point θ ∈ Θ is not fixed a priori, but chosen
optimally

Cost function associated with the i -th system

V i
(
x i
k , ui

k , θ
)

=
(
x i
k − x i

e(θ)
)⊺

Q i
(
x i
k − x i

e(θ)
)

+
(
ui
k − ui

e(θ)
)⊺

R i
(
ui
k − ui

e(θ)
)
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FTOR Problem Formulation

Optimization problem

min
Ut ,θt

N∑

i=1

T−1∑

k=0

V i
(
x i
k,t , u

i
k,t , θt

)

subject to x i
k+1,t = Aix i

k,t + B iui
k,t ,

y i
k,t = C ix i

k,t ,

x i
k,t ∈ X i , k = 1, . . . ,T ,

ui
k,t ∈ U i , k = 0, . . . ,T − 1,

y i
T ,t = θt , x

i
T ,t = x i

e(θt),

x i
0,t = x i

t , i = 1, . . . ,N,

θt ∈ Θ
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Primal Decomposition of FTOR

Eliminate control inputs ui
t = k i (x i

t , θt)

f i(x i
t , θt) = min

U i
t

T−1∑

k=0

V i
(
x i
k,t , u

i
k,t , θt

)

subject to constraints, k = 1, . . . ,T − 1

Express the optimization problem as

f ∗(xt) = min
θt

N∑

i=1

f i (x i
t , θt)

subject to θt ∈ Θ

This belongs to problem class defined earlier

[Johansson et al, 2006]
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Receding Horizon Implementation of FTOR

Measure current state x i
t

Formulate Finite-Time Optimal Rendezvous Problem

Solve using incremental subgradient method
(distributed computations, sequential updates)

Implement local solution corresponding to local rendezvous
point

Workshop on Multi-Agent Coordination and Estimation, Lund, Sweden 24



Numerical Example - Aerial Refueling Scenario

Three aircraft need to rendezvous for refueling

The rendezvous variable is altitude
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Numerical Example - Aerial Refueling Scenario
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Centralized solution MPC implementation with 15 subgradient iterations
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Numerical Example - Aerial Refueling Scenario
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[Keviczky-Johansson, 2008]
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Important Questions

What happens if the negotiations get interrupted?

1. How can we still guarantee stability?

additional constraints
global cost function (cooperation)

2. How can we still guarantee feasibility?

ensuring feasibility of each iterate
challenging with coupling constraints (dual decomposition)
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Multi-agent Estimation Problems

Weighted consensus processes, averaging widely used.

Design choices fundamentally influence performance.

Normalized λ2

[Simonetto-Keviczky-Babuška, 2010]
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Distributed Moving Horizon Estimation

Each node i in the sensor network solves a MHE problem and
computes an estimate of the state, based on neighboring

information zi(k):

φ̂∗
T ,i = min

x i ,{wi (k)}T−1
k=T−N

φ̂T ,i(x i ; {wi(k)}T−1
k=T−N)

with objective function

φ̂T ,i(x i ; {wi (k)}T−1
k=T−N) =

T−1∑

k=T−N

(
v⊤
i (k)R−1vi(k) + w⊤

i (k)Q−1wi (k)
)

+(x i − x̂i ,c(T − N))⊤Π−1
T−N,i (x i − x̂i ,c(T − N)) + φ̂∗

T−N,i

Workshop on Multi-Agent Coordination and Estimation, Lund, Sweden 30



Distributed Moving Horizon Estimation

The arrival cost embeds a consensus term

x̂i ,c(T − N) =
∑

j∈Ni

kij x̂j(T − N)

that is a weighted sum of the neighbors’ estimates.

The matrices ΠT−N,i are calculated also using consensus:

ΠT−N,i = 2
∑

j∈Ni

k2
ij Π̃T−N,j

where each matrix Π̃T−N,i is defined by a recursive Riccati
equation.

Sufficient conditions for convergence are derived for
interleaved consensus & moving horizon scheme.

[Farina et al, 2009]
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Summary

Online optimization-based multi-agent coordination.

Various decomposition schemes for distributed optimization.

Combined subgradient/consensus scheme.

Greater flexibility in the information exchange architecture via
consensus process.
Parallel operation, local messaging, convergence analysis using
approximate subgradients.

Specific features are needed for applicability in real-time
receding horizon control and estimation.
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