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~Delay guarantees for wireless

¢ Increasing use of wireless networks for serving traffic with
delay constraints:
— VolIP
— Interactive Video
— Networked Control
¢ Example
— Average car has 70 microprocessors and kilometers of wiring
— Replace with a Faraday cage and a base-station?
+ Move from event-driven computing to event-cum-time-driven
computing
— Cyberphysical systems
» Vehicular networks, Medical plug-n-play
¢ How to support delay guarantees?
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Backbone of Real-Time Schedulmg -
- Liu-Layland (' 73)

completed completed
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¢ N tasks
— Jobs of Task » arrive with period t,
— Deadline is end of period
— Worst case execution time c,

+ Rate monotone scheduling: Priority to smallest period task

C,

N
¢ All deadlines met if E <NQ2" -1) (= 1n2=0.69 as N— o)

n=1 Tn

+ If any priority policy can meet all deadlines, then this policy came-



Real-time communication:
~ Client-Server model

I

¢ A wireless system with an Access
Point serving N clients

¢ Time is slotted

¢ One slot = One packet

Slot
| G SIS SR S S I S G

.
Packet

¢ AP indicates which client should
transmit in each time slot
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~ Model of unreliable channels

¢ Unreliable channels

¢ Packet transmission in each slot
— Successful with probability p,
— Fails with probability 1-p,

— So packet delivery time is a geometrically
distributed random variable y, with mean 1/p,

¢ Non-homogeneous link qualities
— P> Ps ---» Py Can be different
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II[ .. QoS model

*

*

*

) T . T ) T )
delivered delivered

dropped
Clients generate packets with fixed period

Packets expire and are dropped if not delivered in the period
Delay of successfully delivered packet is therefore at most =

Delivery ratio of Client n should be at least ¢,

1 T
lim inf ; E 1(Packet delivered to Client n in ¢-th period) = g a.s.
T—
t=1
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j[ .Multiple-time scale QoS requirements

¢ Unreliable channels D,
— Short time scale: Slots —eo

¢ Arrivals and Deadlines

< >
— Medium time scale: T |'
— Period t arrivals 1 Deadline
— Relative Deadline G~ o o o o o I

+ Delivery ratio requirements
— Long time scale:

SO SUU U ST SIS SN S

1 T
lirTn inf T E 1(Packet of client n delivered in z-th period) = g, a.s.
—00 —~
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Feasibility of a set of clients
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~ Implied load

¢ Load due to Client n

1
T
p,
T

_ E(# deliveries per period) - E(# slots per delivery)

# of slots of per period

+ The proportion of time slots needed by Client n is
q,
p,T

W =

n
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Necessary condition for feasibility of QoS
~requirements

I

+ Necessary condition from classical queueing theory

N

Ew <1
n

n=1

¢ But not sufficient

¢ Reason: Unavoidable idle time
— No queueing: At most one packet

Forced to be idle

(S e, s [l
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,MStronger necessary condition

¢ LetI(1,2,...,N) ;= Unavoidable idle time after serving {1, 2,..., N}

| NN
11.2,...N)=—E (T—Em) where v, ~ Geom(p, )
T n=1

& Stronger necessary condition
N
Y w, +1(1,2,..,N)=1
n=1

+ Sufficient?

¢ Still not sufficient!
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~ Counterexample

¢ Two clients: Period =3

¢ Client 1

p;=05
q,=0.876

¢ Client2

p,=0.5
q,=045

wot+l,=2.15/3 < 1

¢ Clients {1,2}

Wiz
2652
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j[ - Even stronger necessary condition

¢ Every subset of clients S C {1,2,..., N} should also be feasible

e Let I(S):= lE (1:— Ey) = Idle time if only serving S
T n&s

¢ Stronger necessary condition: E w +1(S) =1, VSC{L2,.. N}
nes

' with S \y with S
+ Not enough to just evaluate for the whole set {1, 2, ..., N}

¢ Theorem (Hou, Borkar & K '09)
Condition is necessary and sufficient for a set of clients to be feasible
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Scheduling policy
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+ Compute “debt” owed to each client at beginning of period

+ A client with higher debt gets a higher priority on that period
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~ TWO definitions of debt
¢ The time debt of Client n

Tf = (w, — Actual proportion of transmission slots given to Client n)

P

¢ The weighted delivery debt of Client n

" q, — Actual delivery ratio of Client n
D

¢ Theorem (Hou, Borkar & K ’09)

Both largest debit first policies fulfill every set of clients that can
be fulfilled
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Utility maximization framework and
solution
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j[ . Utility maximization

¢ Client n has a utility function U (q,)
— U, positive, str incr, str concave, U (0) = right limit ...

+ Maximize the total utility

¢ SYSTEM
Max ZUn(qn)

S.t. % il <1-1,VS

over ¢, =0

Solving SYSTEM directly is
difficult

Clients may have different
utility functions U,

2N feasibility constraints

18/27



@@ Feb 3, 2010, P. R. Kumar

I

~ TWO sub-problems

onsiders own onsiders
utility function feasibility
Client n « Price y, Access Point
N
Pu |_
Max Un( ” ) o, . | Max ¥ p,logg,
" Payment p, n=l

I

Achieved by
¢ Nobody needs to know the | Weighted Transmission Time Policy
channel reliability p, Give priority to lowest u (¢)/p,

u,(t) = Number of slots in [0, 7] given to Client n

(Hou & K ’09) Is wgighted max-n_1in fair |
And weighted proportionally fair
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Networked control
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~ Real-time middleware for control

I~ [~
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] Collision avoidance
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Example of capabilities:
~ Gomponent migration

Communicate.>- Or compute

pixekS? % position?

I

o i
§] b
Zo ﬁ
Kalman Car
filter controller
A
v Migrate
Computer 1 Computer 2 Kalman
Filter
Excessive

delay (Baliga, Graham & K ‘0413/27
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Example of capabilities:
~ Gomponent migration

Communicate.>- Or compute

pixel\'s? QE position?

] |
s

I

Kalman Car
filter controller
A
v Migrate
Computer 1 Computer 2| Kalman
Filter : .
Excessive Real-time middleware

delay (Kim & K ’09)24/27
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Thank you
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