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FEEDBACK NETWORKS

e Motivation
e Complexity
e Graphs of control

e Laplacians
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FEEDBACK NETWORKS
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FEEDBACK NETWORKS

Voltage Collapse
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Recordings at a Western busbar

MWx10 kV

259 A 509 -
225 | 4590 |
. 1V
200 400 ’
175 1 3se
150 4 300 A
125 | a2se |
1007  2ee | —+
75 150 4P (line from north)
50 100 .
= 50
© | — v v T t T 1

Frequency survived well beyond start of
the V collapse

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS —p. 5



FEEDBACK NETWORKS
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Thousands of distributed control actions arranged in hibsa

Ref: Yusheng Xue, PSCC 2005
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FEEDBACK NETWORKS

Network of Life

Fiure ok Henatan and Vienbery, 2000 Cell 900, p 5771
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FEEDBACK NETWORKS

Network Control of a Network

Complex
Dynamic
Network

Control
Network

Networks time-varying, switched, nonlinear

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS —p. 8



FEEDBACK NETWORKS

Special cases

Procass
e Decentralized control I:f:,.m. :

e Distributed control

Key difference: now ask
guestions about architecture,
switching algorithms, etc

Ref: Rantzer, CDC, 2008
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FEEDBACK NETWORKS

Graphs of Control

The system is a large network (system graph)

— Cannot be controlled centrally

Controllers will need to communicate (control graph)
Sensing of data (sensor graph)

— Control designed around multiple graphs
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FEEDBACK NETWORKS

General Network Model
We consider the general dynamic network consisting of:
— diffusive coupling;
— massive numbers of nodes modelled as
n-dimensional systems
N
Xi=fil,p)+ > &l (x—x)+Gu, i=1...,N;
J=1]7#
Special case (Networks science). network with uniform d¢iogp
and linearly interconnected identical nodes

N
Xi = f(X)+C Z ajr(xj—xi)+ui, 1=1,...,N,
J':1,J7é|i\|

L Xi=f(§)+c alxj+u, i=1...,N.
=1
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FEEDBACK NETWORKS

Laplacian Matrix
Outer coupling matriA represents the topology of the network

(311 ai2 - AN \
A 3.21 a.22 ale
\ ani a2 - awn

wherea;; > O, If there Is a connection between nodesd ],

gjj = 0, otherwise, and \

dij = — aij
_ jzlz#i
Laplacian L = —A
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FEEDBACK NETWORKS

Properties ofL
Consider unweighted connected case.

Eigenvalues: G= A1 <Ay < A3 <--- < AN
Properties:

. A» = 0 if graph disconnected
. A2 < N/(N—1). min degk)

. A2 > 4/N. Diameter

. AN > N/(N—1). max degk)

- An < N.

Ref: Chung, Spectral Graph Theory, AMS. 1997.
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FEEDBACK NETWORKS

Pendulum Model

Coupled Pendulums are modeled by

N
m6 + 6 +b;sinG = 1/ + 1isin(wt + @) + Z bij (6 — 6)
j=1J#i
2 coupled pendulums Coupled pendulums can
represented by a 2 node be arranged in network
network with 1 link structure such as a
2-D Lattice .. .. .. .
® @ @& & @
o O © O ©
TR ¢ ¢ ¢ o ©
1'.&_:.'41_5_'15‘1_:5_1..%:!‘-’-‘1"-’ LLF (1.2 (3.2 @2
@ @& @ 6 @
& e o @ ©

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS —p. 14



FEEDBACK NETWORKS

Control by a Network

Controllers with no communication time-delays

N
U = z biiA(Xj —Xi),i =1,---,N; (1)
J=1,17#

B is the coupling matrix of the controllers (1) (has the same
properties a®\), which gives a Laplaciaf—B) for the controllers.

Special case (R. Olfati-Saber & R.M. Murray IEEE AC 2004)
Xi = Ui

with u; having the form of (1).
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FEEDBACK NETWORKS

Meta-view

e No control network (Laplaciand)
— Sync results (Pecora and Carroll, 1998;
Wang and Chen, 2002)
— Vulnerability and fragility (Wang and Chen, 2002;
Doyle, et al., 2005)
— Identical nodes model

e No system network (LaplaciaiB}
— Consensus results (Olfati-Saber and Murray, 2004;
Su and Wang, 2009; etc)
— Identical agents
— Switching, time-delays
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FEEDBACK NETWORKS

Feedback Networks

e Both network system and network control
e Scale on connectivity and dynamics
e Nonlinearity, switching, time-delays

e Structure important to performance and security, I.e.
system planning, control architecture

e Heaps of stability theory on interconnected systems;
some uses structure explicitly, but not much
IS directly useful here, e.g. multiple equilibria,
oscillations etc

e Some ideas Iin power system theory are useful

e Stability theory in network science very simple, i.e. Igcal
but does use the graph
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SYNCHRONIZATION

e More on power systems
e Review complex networks with identical nodes
e Bounded sync with non-id nodes

e Asymptotic sync with non-id nodes

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS —p. 18



SYNCHRONIZATION

Power systems as dynamic network
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SYNCHRONIZATION

Phase Angle Stability in Power Networks
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Ref. M.A.Pai, Energy Function Analysis for Power Systenmb$its
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SYNCHRONIZATION

Review complex networks with identical nodes

Review complex networks with identical nodes

Network model:

N
X = f(Xi)—I—CZ ajjl'xj, 1=1,...,N,
=1

X = (Xi1,...,%n)" € R": state of thé-th node
X=(X{,...,xy)" € RN : state of the network
A= (ajj)nxN - outer coupling matrix,

e Symmetric

° z'j\'zla” —=0,i=1,...,N
[ . inner coupling matrix,
f : continuously differentiable with Jacobi&rf.
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SYNCHRONIZATION

Review complex networks with identical nodes

B Synchronizationx;(t) — xj(t) — 0,i,j=1,---,N
B Synchronization manifold{x | X = x> = --- = xn}
B Remarks:

e A network can be regarded as a dynamical
system, synchronization can be viewed
as some type of stability issue (not usual one)

e Large number of nodes-huge dimension

e Synchronization criteria need to be checkable,
computable, usually of lower dimension

¢ |dentical nodes= invariant synchronization
manifold
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SYNCHRONIZATION

Review complex networks with identical nodes

Consider solution for an isolated nodst)

S(t) = f(s(t))

Let unitary matrix® = (¢ij)nxn = (P, ..., PN),

®TAD = A = diag{A1, A, ..., AN},
Errors:g =x —S(t), e= (eI,--- ,eL)T

& = fla+s) —f(s(t)+ecyilajre

linearized — Df(9)g +cz'j\':1a4jl'ej

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS — p. 23



SYNCHRONIZATION

Review complex networks with identical nodes

or,
e=(1®Df+cAxl)e

Letw = (DT ®1n)e,
= (1®Df +cA®MNw
.e. w=(Df+cAlNw, i=1,2---,N (2)

Theorem: Local synchronizatiors Simultaneous asymptotic
stability of (2)

. L d
One sufficiency criterion:c > 1d|

| A2 |
(Wang and Chen, 2002
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SYNCHRONIZATION

Review complex networks with identical nodes

Remarks

B Many extensions to include time delay, uncertainties,
switching topology...
B Some extensions to nonlinear outer coupling

B Some global versions: robustness analysis
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SYNCHRONIZATION

Bounded sync with non-id nodes

Bounded synchronization

Network model:

N
Xi:fi(xi)+cZajij, 1=1,...,N, (3)
=1

B |[n many cases, asymptotic synchronizatms 0
IS Impossible mainly because of non-identical nodes.

B How to describe the synchronization behavior?
Boundedness! e — some set

B Have a precise bound
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SYNCHRONIZATION

Bounded sync with non-id nodes

Define:g = x —s(t),e= (el,....el)".
N
g = fi(s)+cZa4jI'ej+f01Dfi(s+rei)eidT—S. (4)
=1
é=(cAxl)e
+diag{f01Df1(s+ 1e)dT, -, [y Dfn(S+ Tel\l)dT}e (5)

+ (F1(8),--, FN(E)) " — (8T, 8T .

Remark: Unified form of error equation
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SYNCHRONIZATION

Bounded sync with non-id nodes

sis the average trajectory

. 1 X
B Average state trajectos(t) = N Zxk(t)

N
» Average dynamics (x Z

N
_ Obviously,Zei =0
i=1
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SYNCHRONIZATION

Bounded sync with non-id nodes

&= (cA@T)e+diag{ [y (Dfi(s+ Ter)dr- -

fi(s) — f(s)
o (Dfn(s+ Tey)dT e+ L .
fn(s) — f(s) (6)
JoDfi(s+Te)dr - [y Dfn(s+ Ten)dt
|| S e
) folDfl(s+Tel)dr folDfN(S+Te|\|)dT

B e=0is no longer an equilibrium point
B attractiveness to the origis- synchronization
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SYNCHRONIZATION

Bounded sync with non-id nodes

Let 2%, . be the linear space of the uniformly bounded
continuously differentiable rea x n matrix-valued functions

defined onO, «).

Theorem. Suppose there exist uniformly positive definite
matricesk (t) € 2%, .., constant > 0,b > 0, functions
a(t) > 0 andy(t) > 0 such that

allx|| < x"R(t)x<b|x||?, WteR,, xeR,i=2,...,N, (7)

R+R(Df(s)+cAlN + (Df(s)+cAlN TR +a(t)l <0,
i=2,...,N, ®)

<y,i=1,...,N. (9)

/Ol(Dfi (s+1e)—Df(s))dr
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SYNCHRONIZATION

Bounded sync with non-id nodes

Let f1(s) — f(9)
() = ( - , (10)
f|\| (S) — f(S)
N 1
B= (_;HP.HZ)?. (11)

If a(t)—2y(t)3 > 5 for some constand > 0, the errore(t)
converges to the set

Q= {ellel < Zﬁ\/gmt_ma(t)ﬁ(;)y(t)ﬁ } - 19

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS —p. 31




SYNCHRONIZATION

Bounded sync with non-id nodes

Corollary. Whenlim;_(t) = 0, we have asymptotic
synchronization in the classical sense. In particular,whe- f,
that is, all nodes are identical, we hgvé&) = 0.
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SYNCHRONIZATION

Asymptotic sync with non-id nodes

Asymptotic synchronization

Proposition. Suppose

e Xj(t) are uniformly continuous with respecttto
e fi(X) are uniformly continuous with respectxo

If the network (3) synchronizes, then,

lim (fi(s(t)) — fj(s(t))) =0,1<i,j <N (13)

{—o0
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SYNCHRONIZATION

Asymptotic sync with non-id nodes

Theorem. Suppose

() im (i(s(t)) — f(s(t)) = 0,1 <i,j <N,

{—oo

(i1) there exist time-varying matrikl, uniformly positive definite

matricesk (t) € %%, with || B ||< 1 and constant > 0 such
that

R(t)+ R (t) (I +CAl) + (I +cADTR((t) +al <0,

|1=2,...,N, (14)

1
(i) ||/ Dfi(s+1g)dr - ||< %a,i =1,...,N. (15)
0

Then, the network (3) globally synchronizes.
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CONTROL DESIGN

e Network science approach
e Structure assignment
e Optimization formulation

e Switching control
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CONTROL DESIGN

Pinning Control

From Network Science — only control a small fraction of nodes
(Li, Wang and Chen, 2004)

e Random pinning:
Pin a fraction of randomly selected nodes

e Specific pinning:
First pin the most important node, e.g. highest degree.
Then select and pin the next important node.
Continue- - - till control goal is achieved

Can exploit the network structure, e.g. hubs
But decentralized control on selected nodes
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CONTROL DESIGN

Structure assignment

Structure assignment

B Controlled network

N
)'(i:fi(xi)+cZa4jij+ui, 1=1,...,N, (16)
=1

m Control action: re-set of the outer coupling
N
u=c) bjlrx;, 1=1,...,N, (17)
2

whereB = (bjj)nxn € Z C R™" and# is a given control

constraint set. The matrik+ B for any matrixB € Z is
symmetric and has zero row-sum.
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CONTROL DESIGN

Structure assignment

Some typical forms ofZ.

B Any B € Z Is formed by adding or removing a certain

number of links based on the existing links. The number ce
be pre-given.

B [j; are obtained by adjusting the values of corresponeing

B Some boundedness on the entrieBoffor example,
51 | bij |< M; for some pregiven constarit4 > O.
B A combination of all above.
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CONTROL DESIGN

Structure assignment

Definition. Let (Whx«n, Rnxm) be a matrix pair an®é C C",

2 C R™"M be given sets. We say that the poles of the pAiR)
can be assigned to the setinder the constraint set” if there
existskK € % such that the vector of eigenvalues/éft+ RK
belongs tdS.

This notion is a generalization of pole assignment for linea
systems when feedback is limited to an admissible set.

For simplicity, we only consider the case of equilibriumigain.
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CONTROL DESIGN

Structure assignment

Let Q be the set of altj € R" with the following property:

Property. There exish x n matrix 'l, which may be time-varying,

uniformly positive definite matriceB (t) € 2%+, , with || B [|< 1
and constanr > 0O, all I'1, B, anda may be depending o such
that

R(t)+Rt)(M+agl)+(M+qgl)TR(t)

+al <0,1=1,...,N,

1 1
H/ Dfi(s+Te)dr—M < 2o, i=1...N.
0
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CONTROL DESIGN

Structure assignment

Theorem. Suppos&) # 0. If the poles of the matrix paifA, I )

can be assigned to the @t= {%q | g € Q} under the constraint
set4, then , there existB € 4 such that the controllers

U = CZ'j\':1 bijX;j globally synchronize the network (16).
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CONTROL DESIGN

Structure assignment

Theorem. Suppose there exigt= (qz,0p, -+ ,0n)' Withgr =0, a
unitary matrixG = {g;j }, matriced;j, Ij; =i, &; > 0,
Gj=0ji, L1, <N, # ], &;>0,1<I< ] <N, uniformly

positive definite matriceB(t) € 2%+, with | B [|< 1 a; > 0,
such that

- N 1
A0 +RO (Y G | Dfj(s+edr+ar)

N 1
i <2912i/0 Dfj(s+1e)dr+alM)'R(t) +ail <0,
j=1

N 1
> longn | ( ] Dfits+ Tedrriu) 1< &
=1
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CONTROL DESIGN

Structure assignment

N
22 51k8i(1
2 Z SikEip ™ +ZZC§ &i
k=1+1
2 Z OKN EKN
K=1
If G diag{ay, " --

— 1 G diag{qy, -

<

ai,

a;,2<i<N-—1if N>3

aN.

,On}GT — A € &, then the globally
synchronization is achieved by the controller (17) with

7qN}GT o
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CONTROL DESIGN

Optimization formulation

Optimization formulation

Dynamical network model:
N

Xi(t):f(Xi(t))—I—Czaierj(t), 1=1,2,...,N, (18)
=1

A € RNXN: 0-1 symmetric and irreducible
N N
gjij=— ) &j=— ) aj. (19)

=1 =1
j# j#
Assumption. The equilibrium poinke. = O of the system

X(t) = DT (s(t))x(t)

IS exponentially stable.
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CONTROL DESIGN

Optimization formulation

Graph theory
An undirected grapl’ = (¥, &) consists of# = 7/ (x)N , and
& =8(8)Ly;

The incidence matrixd = (hy, hy, ..., hy) € RNM is a matrix
whereh; € RN with by, = 1, h;, = —1 and all other entries 0 if
the linkg € & between nodek andl;

The Laplacian matrik is theN x N matrix
M
L:HHT:ZhihiT:—A; (20)
=

The complement a¥ denoted by4°¢ consists ofy” and
£° = £9(&@M with me = N1y
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CONTROL DESIGN

Optimization formulation

Basic idea

max

—Xi(cA+ ~vB)

A

+ —)
Network controller:
( N
U = y_zlbierj,
J:
< ) (21)
y bij <d,
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CONTROL DESIGN

Switching control

Switching network controllers

N

Y = v S b7, i=1,2,...,N, (22)
=1

s 1’ € R" the switching controller of nodie

® switching signalo(t) : [0,0) — .Z ={1,...,m}

B\ > 0: the control gain ofi;

= By = (b)(N x N): the outer coupling matrix afi.

W andBy satisfy the energy constraint (23) with> 0,

Wy bj<d. (23)

1<i<J<N
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CONTROL DESIGN

Switching control

Theorem. Consider the unbounded sync reglea: [a;,»). For a
given candidate controller set, if the solutionA, of the convex

optimization (24) satisfied; < —aj, then the synchronization of
the network (18) is achieved under the switching law (25).

m
min A(CA+ Z B kBx)
K=1

S.t. g =1 (24)
K=1

60,1, k=21,2,....m
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CONTROL DESIGN

Switching control

Switching law

o(t) =k, if (t,e) € Q, (25)
where
Q= {(t,e)le' (P+ (INn®Df(s(t)) +A®I)'P (26)
+P(In®@Df(s(t)) + Ac®Tl))e< 0}
and

P+ (Df(s(t)) + Ail) "R +R(Df(s(t)) + Ail) < 0

P=(Px1,)P(®' ®1,) andP = diag{P.,P, ..., R}
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OTHER WORK AND IDEAS

Small-gain theory (TFLIiu, Hill and Jiang, CDC 2009)
Passivity approach (Arcak, IEEE TAC 2007)

Time-delays (TLiu, Hill and Zhao, submitted to NOLCOS)
Switched networks (Zhao and Hill, Automatica, 2009)
Impulsive network control (BLiu and Hill, CDC 2008)
Mean-field control (Caines, CDC 2009)

Tractability (Swigart and Lall, CDC 2009)
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Small-gain theory

Theorem (Lyapunov-ISS cyclic-small-gain) The dynamical
network is ISS, if the composition of the Lyapunov-ISS gains
along every cycle is less than Id.

y4l
(2 7
Y13 Q
V31 " Yizo ¥31 < Id
@ Q% Vo30 Y32 < Id

Y120 Y30 ¥31 < |d

Ref: T.Liu, D.J.Hill and Z-P.Jiang, CDC 2009
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CONCLUSIONS

Feedback networks with non-id nodes model engineering
systems

Stability theory
Control synthesis and design

Scaling to large systems - bring in computer scientists?
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Thank you
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