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FEEDBACK NETWORKS

• Motivation

• Complexity

• Graphs of control

• Laplacians
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FEEDBACK NETWORKS

Blackout 2003 USA-Canada
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FEEDBACK NETWORKS

Voltage Collapse

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS – p. 5/54



FEEDBACK NETWORKS

Thousands of distributed control actions arranged in hierarchy.

Ref: Yusheng Xue, PSCC 2005
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FEEDBACK NETWORKS

Network of Life
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FEEDBACK NETWORKS

Network Control of a Network

Networks time-varying, switched, nonlinear
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FEEDBACK NETWORKS

Special cases

• Decentralized control

• Distributed control

Key difference: now ask
questions about architecture,
switching algorithms, etc

Ref: Rantzer, CDC, 2008
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FEEDBACK NETWORKS

Graphs of Control

The system is a large network (system graph)

– Cannot be controlled centrally

Controllers will need to communicate (control graph)

Sensing of data (sensor graph)

– Control designed around multiple graphs
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FEEDBACK NETWORKS

General Network Model
We consider the general dynamic network consisting of:

– diffusive coupling;
– massive numbers of nodes modelled as

n-dimensional systems

ẋi = fi(xi, pi)+
N

∑
j=1, j 6=i

ai jΓ(x j − xi)+Giui, i = 1, . . . ,N;

Special case (Networks science): network with uniform coupling
and linearly interconnected identical nodes

ẋi = f (xi)+ c
N

∑
j=1, j 6=i

ai jΓ(x j − xi)+ui, i = 1, . . . ,N,

or ẋi = f (xi)+ c
N

∑
j=1

ai jΓx j +ui, i = 1, . . . ,N.
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FEEDBACK NETWORKS

Laplacian Matrix

Outer coupling matrixA represents the topology of the network

A =











a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

...
aN1 aN2 · · · aNN











whereai j > 0, if there is a connection between nodesi and j,
ai j = 0, otherwise, and

aii = −
N

∑
j=1, j 6=i

ai j

Laplacian L = −A
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FEEDBACK NETWORKS

Properties ofL

Consider unweighted connected case.

Eigenvalues: 0= λ1 < λ2 ≤ λ3 ≤ ·· · ≤ λN

Properties:

� λ2 = 0 if graph disconnected
� λ2 ≤ N/(N −1). min deg(k)
� λ2 ≥ 4/N. Diameter
� λN ≥ N/(N −1). max deg(k)
� λN ≤ N.

Ref: Chung, Spectral Graph Theory, AMS. 1997.
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FEEDBACK NETWORKS

Pendulum Model

Coupled Pendulums are modeled by

miθ̈i + γiθ̇i +bi sinθi = τ ′i + τi sin(ωt +φi)+
N

∑
j=1, j 6=i

bi j(θ j −θi)

Coupled pendulums can
be arranged in network
structure such as a
2-D Lattice

2 coupled pendulums
represented by a 2 node
network with 1 link
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FEEDBACK NETWORKS

Control by a Network

Controllers with no communication time-delays

ui =
N

∑
j=1, j 6=i

bi jΛ(x j − xi), i = 1, · · · ,N; (1)

B is the coupling matrix of the controllers (1) (has the same
properties asA), which gives a Laplacian(−B) for the controllers.

Special case (R. Olfati-Saber & R.M. Murray IEEE AC 2004)

ẋi = ui

with ui having the form of (1).
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FEEDBACK NETWORKS

Meta-view

• No control network (Laplacian -A)
– Sync results (Pecora and Carroll, 1998;

Wang and Chen, 2002)
– Vulnerability and fragility (Wang and Chen, 2002;

Doyle, et al., 2005)
– Identical nodes model

• No system network (Laplacian -B)
– Consensus results (Olfati-Saber and Murray, 2004;

Su and Wang, 2009; etc)
– Identical agents
– Switching, time-delays
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FEEDBACK NETWORKS

Feedback Networks

• Both network system and network control

• Scale on connectivity and dynamics

• Nonlinearity, switching, time-delays

• Structure important to performance and security, i.e.
system planning, control architecture

• Heaps of stability theory on interconnected systems;
some uses structure explicitly, but not much
is directly useful here, e.g. multiple equilibria,
oscillations etc

• Some ideas in power system theory are useful

• Stability theory in network science very simple, i.e. local,
but does use the graph
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SYNCHRONIZATION

• More on power systems

• Review complex networks with identical nodes

• Bounded sync with non-id nodes

• Asymptotic sync with non-id nodes
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SYNCHRONIZATION

Power systems as dynamic network

Miθ̈i +Diθ̇i + ∑
j∈Ci

ViVjbi j sin(θi −θ j) = Pi
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SYNCHRONIZATION

Phase Angle Stability in Power Networks

Ref: M.A.Pai, Energy Function Analysis for Power System Stability
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SYNCHRONIZATION
Review complex networks with identical nodes

Review complex networks with identical nodes

Network model:

ẋi = f (xi)+ c
N

∑
j=1

ai jΓx j, i = 1, . . . ,N,

xi = (xi1, . . . ,xin)
T ∈ Rn : state of thei-th node

x = (xT
1 , . . . ,xT

N)T ∈ RnN : state of the network
A = (ai j)N×N : outer coupling matrix,

• symmetric
• ∑N

j=1ai j = 0, i = 1, . . . ,N
Γ : inner coupling matrix,
f : continuously differentiable with JacobianD f .
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SYNCHRONIZATION
Review complex networks with identical nodes

Synchronization:xi(t)− x j(t) → 0, i, j = 1, · · · ,N

Synchronization manifold:{x | x1 = x2 = · · · = xN}

Remarks:

• A network can be regarded as a dynamical
system, synchronization can be viewed
as some type of stability issue (not usual one)

• Large number of nodes⇒huge dimension

• Synchronization criteria need to be checkable,
computable, usually of lower dimension

• Identical nodes⇒ invariant synchronization
manifold
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SYNCHRONIZATION
Review complex networks with identical nodes

Consider solution for an isolated node:s(t)

ṡ(t) = f (s(t))

Let unitary matrixΦ = (ϕi j)N×N = (Φ1, . . . ,ΦN),

ΦT AΦ = Λ = diag{λ1,λ2, . . . ,λN},

Errors:ei = xi − s(t), e = (eT
1 , · · · ,eT

N)T

ėi = f (ei + s)− f (s(t))+ c∑N
j=1ai jΓe j

linearized → D f (s)ei + c∑N
j=1ai jΓe j
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SYNCHRONIZATION
Review complex networks with identical nodes

or,
ė = (I⊗D f + cA⊗Γ)e

Let ω = (ΦT ⊗ In)e,

ω̇ = (I⊗D f + cΛ⊗Γ)ω

i.e. ω̇i = (D f + cλiΓ)ωi, i = 1,2, · · · ,N (2)

Theorem: Local synchronization⇔ Simultaneous asymptotic
stability of (2)

One sufficiency criterion:c ≥
| d |

| λ2 |
(Wang and Chen, 2002)
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SYNCHRONIZATION
Review complex networks with identical nodes

Remarks

Many extensions to include time delay, uncertainties,
switching topology...

Some extensions to nonlinear outer coupling

Some global versions: robustness analysis
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SYNCHRONIZATION
Bounded sync with non-id nodes

Bounded synchronization

Network model:

ẋi = fi(xi)+ c
N

∑
j=1

ai jΓx j, i = 1, . . . ,N, (3)

In many cases, asymptotic synchronizatione → 0
is impossible mainly because of non-identical nodes.

How to describe the synchronization behavior?

Boundedness! e → some set

Have a precise bound
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SYNCHRONIZATION
Bounded sync with non-id nodes

Define:ei = xi − s(t), e = (eT
1 , . . . ,eT

N)T .

ėi = fi(s)+ c
N

∑
j=1

ai jΓe j +
∫ 1

0 D fi(s+ τei)eidτ − ṡ. (4)

ė = (cA⊗Γ)e

+diag
{

∫ 1
0 D f1(s+ τe1)dτ , · · · ,

∫ 1
0 D fN(s+ τeN)dτ

}

e

+
(

f T
1 (s), · · · , f T

N (s)
)T

−
(

ṡT , · · · , ṡT
)T

.

(5)

Remark: Unified form of error equation
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SYNCHRONIZATION
Bounded sync with non-id nodes

s is the average trajectory

Average state trajectorys(t) =
1
N

N

∑
k=1

xk(t)

Average dynamics̄f (x) =
1
N

N

∑
k=1

fk(x)

Obviously,
N

∑
i=1

ei = 0
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SYNCHRONIZATION
Bounded sync with non-id nodes

ė = (cA⊗Γ)e+diag{
∫ 1

0 (D f1(s+ τe1)dτ · · ·

∫ 1
0 (D fN(s+ τeN)dτ}e+







f1(s)− f̄ (s)
...

fN(s)− f̄ (s)






.

− 1
N







∫ 1
0 D f1(s+ τe1)dτ · · ·

∫ 1
0 D fN(s+ τeN)dτ

...
...

...
∫ 1

0 D f1(s+ τe1)dτ · · ·
∫ 1

0 D fN(s+ τeN)dτ






e

(6)

e = 0 is no longer an equilibrium point

attractiveness to the origin⇒ synchronization
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SYNCHRONIZATION
Bounded sync with non-id nodes

Let PC
1
n×n be the linear space of the uniformly bounded

continuously differentiable realn×n matrix-valued functions
defined on[0,∞).

Theorem. Suppose there exist uniformly positive definite
matricesPi(t) ∈ PC

1
n×n, constanta > 0,b > 0, functions

α(t) > 0 andγ(t) ≥ 0 such that

a‖x‖2 ≤ xT Pi(t)x ≤ b‖x‖2, ∀t ∈ R+, x ∈ Rn, i = 2, . . . ,N, (7)

Ṗi +Pi(D f̄ (s)+ cλiΓ)+(D f̄ (s)+ cλiΓ)T Pi +α(t)I ≺ 0,

i = 2, . . . ,N,
(8)

∥

∥

∥

∥

∫ 1

0
(D fi(s+ τei)−D f̄ (s))dτ

∥

∥

∥

∥

≤ γ , i = 1, . . . ,N. (9)
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SYNCHRONIZATION
Bounded sync with non-id nodes

Let

µ(t) =

∥

∥

∥

∥

∥

∥

∥







f1(s)− f̄ (s)
...

fN(s)− f̄ (s)







∥

∥

∥

∥

∥

∥

∥

, (10)

β = (
N

∑
i=2

‖Pi‖
2)

1
2 . (11)

If α(t)−2γ(t)β ≥ δ̄ for some constant̄δ > 0, the errore(t)
converges to the set

Q̄ =

{

e|‖e‖ ≤ 2β
√

b
a

limt→∞
µ(t)

α(t)−2γ(t)β

}

. (12)

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS – p. 31/54



SYNCHRONIZATION
Bounded sync with non-id nodes

Corollary. Whenlimt→∞µ(t) = 0, we have asymptotic
synchronization in the classical sense. In particular, when fi = f ,
that is, all nodes are identical, we haveµ(t) ≡ 0.
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SYNCHRONIZATION
Asymptotic sync with non-id nodes

Asymptotic synchronization

Proposition. Suppose

• xi(t) are uniformly continuous with respect tot,
• fi(x) are uniformly continuous with respect tox.

If the network (3) synchronizes, then,

lim
t→∞

( fi(s(t))− f j(s(t))) = 0,1≤ i, j ≤ N (13)
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SYNCHRONIZATION
Asymptotic sync with non-id nodes

Theorem. Suppose

(i) lim
t→∞

( fi(s(t))− f j(s(t))) = 0,1≤ i, j ≤ N,

(ii) there exist time-varying matrixΠ, uniformly positive definite
matricesPi(t) ∈ PC

1
n×n with ‖ Pi ‖≤ 1 and constantα > 0 such

that

Ṗi(t)+Pi(t)(Π+ cλiΓ)+(Π+ cλiΓ)T Pi(t)+αI ≺ 0,

i = 2, . . . ,N,
(14)

(iii) ‖

∫ 1

0
D fi(s+ τei)dτ −Π ‖≤

1
2

α , i = 1, . . . ,N. (15)

Then, the network (3) globally synchronizes.
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CONTROL DESIGN

• Network science approach

• Structure assignment

• Optimization formulation

• Switching control
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CONTROL DESIGN

Pinning Control

From Network Science – only control a small fraction of nodes
(Li, Wang and Chen, 2004)

• Random pinning:
Pin a fraction of randomly selected nodes

• Specific pinning:
First pin the most important node, e.g. highest degree.
Then select and pin the next important node.
Continue· · · till control goal is achieved

Can exploit the network structure, e.g. hubs

But decentralized control on selected nodes
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CONTROL DESIGN
Structure assignment

Structure assignment

Controlled network

ẋi = fi(xi)+ c
N

∑
j=1

ai jΓx j +ui, i = 1, . . . ,N, (16)

Control action: re-set of the outer coupling

ui = c
N

∑
j=1

bi jΓx j, i = 1, . . . ,N, (17)

whereB = (bi j)n×n ∈ B ⊂ Rn×n andB is a given control
constraint set. The matrixA+B for any matrixB ∈ B is
symmetric and has zero row-sum.
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CONTROL DESIGN
Structure assignment

Some typical forms ofB:

Any B ∈ B is formed by adding or removing a certain
number of links based on the existing links. The number can
be pre-given.

bi j are obtained by adjusting the values of correspondingai j.

Some boundedness on the entries ofB, for example,
∑N

j=1 | bi j |≤ Mi for some pregiven constantsMi > 0.

A combination of all above.
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CONTROL DESIGN
Structure assignment

Definition. Let (Wn×n,Rn×m) be a matrix pair andS ⊆Cn,
K ⊆ Rm×n be given sets. We say that the poles of the pair(W,R)
can be assigned to the setS under the constraint setK if there
existsK ∈ K such that the vector of eigenvalues ofW +RK
belongs toS.

This notion is a generalization of pole assignment for linear
systems when feedback is limited to an admissible set.

For simplicity, we only consider the case of equilibrium solution.
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CONTROL DESIGN
Structure assignment

Let Q be the set of allq ∈ Rn with the following property:

Property. There existn×n matrix Π, which may be time-varying,
uniformly positive definite matricesPi(t) ∈ PC

1
n×n with ‖ Pi ‖≤ 1

and constantα ≥ 0, all Π,Pi andα may be depending onq, such
that

Ṗi(t)+Pi(t)(Π+qiΓ)+(Π+qiΓ)T Pi(t)
+αI ≺ 0, i = 1, . . . ,N,

‖

∫ 1

0
D fi(s+ τei)dτ −Π ‖≤

1
2

α , i = 1, . . . ,N.
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CONTROL DESIGN
Structure assignment

Theorem. SupposeQ 6= /0. If the poles of the matrix pair(A, I)
can be assigned to the setQ̄ = {1

c q | q ∈ Q} under the constraint
setB, then , there existsB ∈ B such that the controllers
ui = c∑N

j=1bi jΓx j globally synchronize the network (16).
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CONTROL DESIGN
Structure assignment

Theorem. Suppose there existq = (q1,q2, · · · ,qN)T with q1 = 0, a
unitary matrixG = {gi j}, matricesΠi j, Πi j = Π ji, δi j > 0,
δi j = δ ji, 1≤ i, j ≤ N, i 6= j, εi j > 0, 1≤ i < j ≤ N, uniformly

positive definite matricesPi(t) ∈ PC
1
n×n with ‖ Pi ‖≤ 1 αi ≥ 0,

such that

Ṗi(t)+Pi(t)(
N

∑
j=1

g2
ji

∫ 1

0
D f j(s+ τe j)dτ +qiΓ)

+ (
N

∑
j=1

g2
ji

∫ 1

0
D f j(s+ τe j)dτ +qiΓ)T Pi(t)+αiI ≺ 0,

N

∑
j=1

| g jkg ji |‖

(

∫ 1

0
D f j(s+ τe j)dτ −Πik

)

‖≤ δik,
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CONTROL DESIGN
Structure assignment

2
N

∑
k=2

δ1kε−1
1k ≤ α1,

2
N

∑
k=i+1

δikε−1
ik +2

i−1

∑
l=1

δliεli ≤ αi,2≤ i ≤ N −1, if N ≥ 3,

2
N−1

∑
k=1

δkNεkN ≤ αN.

If 1
c G diag{q1, · · · ,qN}GT −A ∈ B, then the globally

synchronization is achieved by the controller (17) with
B = 1

c G diag{q1, · · · ,qN}GT −A.
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CONTROL DESIGN
Optimization formulation

Optimization formulation

Dynamical network model:

ẋi(t) = f (xi(t))+ c
N

∑
j=1

ai jΓx j(t), i = 1,2, . . . ,N, (18)

A ∈ R
N×N : 0-1 symmetric and irreducible

aii = −
N

∑
j=1
j 6=i

ai j = −
N

∑
j=1
j 6=i

a ji. (19)

Assumption. The equilibrium pointxe = 0 of the system
ẋ(t) = D f (s(t))x(t)

is exponentially stable.
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CONTROL DESIGN
Optimization formulation

Graph theory

An undirected graphG = (V ,E ) consists ofV = V (xi)
N
i=1 and

E = E (ēi)
M
i=1;

The incidence matrixH = (h1,h2, . . . ,hM) ∈ R
N×M is a matrix

wherehi ∈ R
N with hik = 1, hil = −1 and all other entries 0 if

the link ēi ∈ E between nodesk andl;

The Laplacian matrixL is theN ×N matrix

L = HH⊤ =
M

∑
i=1

hih
⊤
i = −A; (20)

The complement ofG denoted byG c consists ofV and

E c = E c(ēc
i )

Mc

i=1 with Mc = N(N−1)
2 −M.
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CONTROL DESIGN
Optimization formulation

Basic idea

Network controller:


















ui = γ
N
∑
j=1

bi jΓx j,

γ ∑
1≤i< j≤N

bi j ≤ d̄,

(21)
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CONTROL DESIGN
Switching control

Switching network controllers

uσ(t)
i = γσ(t)

N

∑
j=1

bσ(t)
i j Γx j, i = 1,2, . . . ,N, (22)

uσ(t)
i ∈ R

n: the switching controller of nodei;

switching signalσ(t) : [0,∞) → M = {1, . . . ,m}

γk > 0: the control gain ofuk;

Bk = (bk
i j)(N ×N): the outer coupling matrix ofuk.

γk andBk satisfy the energy constraint (23) with̄d > 0,

γk ∑
1≤i< j≤N

bk
i j ≤ d̄. (23)
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CONTROL DESIGN
Switching control

Theorem. Consider the unbounded sync regionS = [α1,∞). For a
given candidate controller setU , if the solutionλ ∗

2 of the convex
optimization (24) satisfiesλ ∗

2 ≤−α1, then the synchronization of
the network (18) is achieved under the switching law (25).

min λ2(cA+
m

∑
k=1

θkγkBk)

s.t.
m

∑
k=1

θk = 1

θk ∈ [0,1], k = 1,2, . . . ,m

(24)
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CONTROL DESIGN
Switching control

Switching law

σ(t) = k, if (t,e) ∈ Ωk, (25)

where

Ωk = {(t,e)|e⊤(Ṗ+(IN ⊗D f (s(t))+Ak ⊗Γ)⊤P

+P(IN ⊗D f (s(t))+Ak ⊗Γ))e < 0}
(26)

and

Ṗi +(D f (s(t))+λiΓ)⊤Pi +Pi(D f (s(t))+λiΓ) < 0

P = (Φ⊗ In)P̄(Φ⊤⊗ In) andP̄ = diag{P1,P2, . . . ,PN}
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OTHER WORK AND IDEAS

Small-gain theory (TFLiu, Hill and Jiang, CDC 2009)
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Small-gain theory

Theorem (Lyapunov-ISS cyclic-small-gain) The dynamical
network is ISS, if the composition of the Lyapunov-ISS gains
along every cycle is less than Id.

j j

j
j

j
�
�
�
�
�
���
�

�
�

�
��

A
A
A
A
A
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γ13◦ γ31 < Id
γ23◦ γ32 < Id

γ12◦ γ23◦ γ31 < Id

Ref: T.Liu, D.J.Hill and Z-P.Jiang, CDC 2009

STRUCTURE AND STABILITY IN FEEDBACK NETWORKS – p. 52/54



CONCLUSIONS

Feedback networks with non-id nodes model engineering
systems

Stability theory

Control synthesis and design

Scaling to large systems - bring in computer scientists?
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Thank you
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