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Experimental Platform: STARMAC

The Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control

[Hoffmann, Waslander, Vitus, Huang, Gillula, Mercer, Bouffard, Li]



Case Study:  Collision Avoidance

Pilots instructed to attempt to collide vehicles



Image analysis can record 3D gene expression at 

cellular resolution

id, x,      y,      z,      Nx,    Ny,    Nz,    Vn,     Vc,     Sytox, Cy3_n, Cy3_a, Cy3_b, Cy3_g, Cou_n, Cou_a, Cou_b, Cou_g

1, 102.36, 142.14, 112.00,-0.396, 0.851, 0.344, 207.96, 605.36, 52.18, 23.55, 18.76, 22.55, 22.10, 11.95,  8.13, 28.01, 12.04

2, 264.63, 172.01,  79.36, 0.103, 0.972,-0.208, 281.73, 599.90, 82.12, 31.67, 34.97, 15.95, 31.93, 21.06, 12.56, 41.40, 19.12

3, 225.91, 174.99,  88.65,-0.030, 0.999,-0.015, 185.79, 418.35, 85.32, 35.63, 31.27, 14.77, 34.00, 19.59, 20.53, 38.80, 21.35

4, 318.42,  48.34, 138.91, 0.095,-0.744, 0.660, 182.46, 464.19, 37.61, 19.31, 15.15, 12.47, 17.55, 21.01, 13.78, 26.87, 17.53

5, 110.18,  34.40, 109.65,-0.186,-0.913, 0.362, 127.81, 432.01, 55.78, 24.12, 23.53, 12.19, 19.71, 13.81,  7.57, 28.16, 12.40

6, 340.48,  73.79, 37.548, 0.205,-0.299,-0.931, 208.26, 607.49, 80.23, 33.04, 26.75, 21.24, 28.91, 31.48, 20.69, 50.45, 26.96

. . .

3D confocal images 3D segmentation mask

a “PointCloud” table

Luengo et al, 2006



a 3D gene expression atlas

Fowlkes et al, 2008



a 3D gene expression atlas

Fowlkes et al, 2008

16 million cells

3,000 embryos

7 time points

protein 20 factors

KNI

HB

GT

EVE

SLP1

FTZ

time

1.0

0.8

0.6

0.4

0.2

0.0



[Fomekong-Nanfack et al 2009,

Perkins et al 2006]



Quantitative changes in expression are 

evident along both axes for almost all genes

visualizing expression along both axes

cylindrical projection



Quantitative changes in expression are 

evident along both axes for almost all genes

eve

eve expression along D/V axis sna expression along A/P axis

sna



Toy Example: Pendulum

• Dynamics:

• Write this as:

Äµ = ¡
g

l
sin µ µ

l

[Jeremy Gillula]
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Pendulum

Suppose:

• model is unknown

• noisy measurements are available of                                           
velocity

Identify a model

where

and          is unknown

[Jeremy Gillula]

X =
h

µ _µ sin µ sin _µ cos µ cos _µ µ2 _µ2 : : :
i T



Pendulum

[Jeremy Gillula]
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x1_dot = 0.23*x1 + 0.96*x2 + -0.27*sin(x1) + 

-0.02*cos(x1) + 0.15*sin(x2) + -0.01*cos(x2)

x2_dot = 3.66*x1 + 0.00*x2 + -13.92*sin(x1) + 

0.01*cos(x1) + -0.00*sin(x2) + 0.01*cos(x2)

Learned Result:

Important to prevent overfitting



[Kloetzer and Belta; Ma, Vidal, and Sastry; Soatto; Vijayakumar; Atkeson; Ting; Hunt…]

Online System Identification



Online System Identification

[Kloetzer and Belta; Ma, Vidal, and Sastry; Soatto; Vijayakumar; Atkeson; Ting; Hunt…]



Online System Identification

[Kloetzer and Belta; Ma, Vidal, and Sastry; Soatto; Vijayakumar; Atkeson; Ting; Hunt…]



[Bickel and Li, 2007]

Online System Identification

• Undersampling for high-dimensional systems

• Constrained dynamics

• Fast-slow dynamics



Online System Identification



Online System Identification



Online System Identification



Online System Identification

Look for a geometric structure for sparsity

Local linear models are easy to manipulate



Stage 5:0-3

Stage 5:4-8

Stage 5:9-25

Stage 5:26-50

Stage 5:51-75

Stage 5:76-100

eve mRNA data shown in 3D and 2D 

projections



Data, Stage 5:  0-3



Data, Stage 5:  4-8



Data, Stage 4:  9-25



Local Linear Regression

Solve for                in                             for all 

Rewrite as:

where
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Existing Approaches

Estimator Considers geometry Sparsity High-dimensionality

Moore-Penrose1 Yes

Ridge2

Principal 

Components 

Regression3

Yes

Lasso4,5 Yes Yes

Elastic Net6 Yes Yes

Partial Least 

Squares7

Yes

1 (Knight and Fu, 2000); 2(Hoerl and Kannard, 1970); 3(Massy, 1965); 
4(Tibshirani, 1996); 5(Zou, 2006); 6(Zou and Hastie, 2005); 7(Wold, 1975)



Online System Identification

•Difficulty in interpreting regression coefficients

•Gradient of function does not exist

@f

@x1

= lim
h! 0

f (x1 + h; x2) ¡ f (x1; x2)

h



Online System Identification

Exterior derivative of function does exist

• Extension of gradients to manifolds

• Best local linear approximation of function on manifold

df = A : lim
khk! 0

x+ h2 M

kf (x + h) ¡ f (x) ¡ Ahk

khk
= 0
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New Estimation Approach

(Aswani , Bickel, Tomlin, 2010); (Bickel and Levina, 2008)

• Locally learn manifold

• Constrain regression vector to lie on the manifold 

by penalizing for deviations from manifold

• Where      is chosen to penalize     for lying off of 

the manifold



eve mRNA expression temporal change 

in mRNA expression

t=0

t=1

t=2

correlation of gt protein

with change in eve mRNA

Correlation over space and time



Drosophila Embryo, Stage 5

factor activity 



Results:  eve, Stage 5: 0-25

data model error



Results:  eve, Stage 5: 26-100

data model error



Factor activity, Stage 5: 4-8



Rate of eve production vs gtP, Stage 5: 4-8



predicted gt activity

simulated
predicted gt activity

“correlation model”



predicted hb activity

simulated
predicted hb activity

“correlation model”



predicted kr activity

simulated
predicted kr activity

“correlation model”



Potential insights

• factors appear to have concentration dependent effects

– repressing at one concentration, activating at another

– spurious correlations or real effects?

• starting to analyze the other data sets (binding data)

– if true, could add a new layer to the complexity of the signaling 

network

• model overlaps, but also gives some different results 

from the spatial correlation model

– can distinguish between weakening of repression, and 

repression, for example



Summary …

• Method for local linear regression, designed for systems 

evolving on a manifold of lower dimension than overall space

– Designed to prevent overfitting

– Can be used as a tool to help identify network structure

• Another new project:  network and parameter identification of 

HER2/3 network in cancer (with Joe Gray, Young-Hwan Chang, 

Steven Xie, and Soulaiman Itani)

A

D B

E

C
Known in the 

same cell 

type.Doesn’t exist. 

Discovered in vitro.

Unknown.

Force.

Encourage.             

Allow.

Forbid.       

[S. Itani]
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Air Traffic Control:  Separation Assurance

Safety: 5 mile lateral, 1000 ft vertical 

separation

FACET, NASA Ames



Case Study 2: Back-Flip

• Divide flip into three modes

• Hit desired target sets while avoiding unsafe sets

ImpulseDriftRecovery



Back-flip: Method

Recovery Drift Impulse
• Identify target region in 

rotational state space for 
each mode

• Use reachable sets to 
calculate capture basin for 
each target

– Dynamic game 
formulation accounts for 
worst-case disturbances

• Verify that target of each 
mode is contained by 
capture basin of next mode



Back-Flip: Results





Toy Example:  Mass-Spring System
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Mass-Spring System

• X = matrix of low noise measurements of positions

• Y = vector of noisy measurements of acceleration

• K = vector of estimated coefficients for the first ODE
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Degenerate Mass-Spring System

)(1 tx )(2 tx

m m

1k 2k

Lxx

Lx
m

k
x

12

1
1

1
2



k2 is a very stiff spring

L = Length of uncompressed spring



Degenerate Mass-Spring System

• X = matrix of low noise measurements of positions

• Y = vector of noisy measurements of acceleration

• K = vector of estimated coefficients for the first ODE

• PROBLEM: Covariance matrix is (nearly) singular

• CAUSE: States have geometric constraints

YXXX

XYK

TT 1

2

2
minarg

Important to design methods robust to this



Mass-Spring Example



Error Bars



FIT:  [0, 3]



FIT:  [4, 8]



FIT:  [9, 25]



RESULTS:

Heatmap of Coefficients Times Factor Concentrations 

on Eve Stripes at Stage 5:4-8

with Changing Window Size

In general need to explain the weakening of 

repression etc.





Heatmap of Coefficients Times Factor Concentrations 

on Eve Stripes at Stage 5:4-8

with Fixed Window Size of Circle with Width of 6 Cells





Heatmap of Correlation Between Factor 

Concentration and Eve Stripes at Stage 5:4-8





Experimental eve mRNA Patterns



Simulated eve mRNA Patterns



Percent Error



Regulation is often associated with 

correlations in expression



Regression analysis detects known 

regulatory interactions

Fowlkes et al, 2008

1 7

M(x,t) = F{ Pi(x,t) }
Repressor

Activator

Transcription factors

eve 1

eve 2

eve 3

eve 4

eve 5

eve 6

eve 7



The method can be rapidly applied 

to any large quantitative dataset

100s of expression stripes from 95 genes



The measured expression correlates well

with that predicted by the regression

Correlation coefficient  

Frequency

Most expression stripes r > 0.6



Talk outline

• One slide on PCP – use as motivation (here, we assumed a 

structure – given to us from Jeff, before modeling).  What if we 

didn’t have, or weren’t confident with, the structure?

• Simple pendulum example

• Mark’s system

• Local linear regression – justify, as a basis for identifying a 

potentially nonlinear system

– Method gives the regions of best fit, so there is a higher density of 

models in “very nonlinear” regions

– Key:  protect against overfitting.  If the system dynamic lies on a 

lower dimensional manifold, find it. (you can use the hb kr example 

here if you want)

– Sparsity, high dimensionality(?), non-parametric

• Results



Questions

• Anil – what is the diagram on slide 74 of quals pres?

• Mark – hb, kr well known interaction?

• Anil:  NEDE is equivalent to an optimization formulation 
of principal components regression; Elastic net is 
equivalent to NALEDE in which the data is pure noise (no 
manifold) – explain clearly what is different
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Comparison to Previous Work

• NEDE is equivalent to an optimization formulation of 
principal components regression

• Elastic net is equivalent to NALEDE in which the data is 
pure noise (no manifold)

• Combines positive aspects of different estimators

• Computational effort comparable to that of existing 
estimators
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Simulation Results – Normalized Mean 
Squared Error

72
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Simulation Results – Classification Rate
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• In previous models of the HER2/3 signaling pathway, the structure was fixed a priori 

(from biological knowledge.)
– Structure from different cell types, animals, and in vitro experiments  was used. These do not necessarily 

hold.

– Some parts of the structure might not have been discovered to date.

• We therefore need to search for the correct structure, and not only the parameters 

given a certain structure.

A

D B

E

C
Known in the 

same cell type.Established in 

many other 

types of cells.

Discovered in 

vitro.

Unknown.



• To include structure modifications in the optimization, we introduce a module that 

creates possible networks, in a controlled fashion, and a module that creates different 

experiments.

– Connections in a network can be forced, prohibited, encouraged, or discouraged. 

A

D B

E

C
Known in 

the same 

cell type.Doesn’t exist. 

Discovered in vitro.

Unknown.

Force.

Encourage.             

Allow.

Forbid.       



A

D B

E

C

Create new 

network.

Choose 

parameters.

Specify 

experiment(s).

Compare 

results to 

data.

Decide on the next 

step depending on 

the optimization 

algorithm.


