Some outstanding challenges In
reinforcement learning

Csaba Szepesvari

ﬂ DeepMind

Contents

e Whatis RL? How does ML work?
o Does it work? What makes it work?

e How is it done?

o ADP
o What is known about ADP?
o Challenge #1: Efficient planning

e On the exploration problem

o Strategic planning, optimism
o Challenge #2: Efficient exploration

e Conclusions

Reinforcement Learning (RL)
Rion - 21

state ol

Ry =19(Xe, A, W) “parameter”

)
(m) Xev1 = fo(Xe, Ap, W) 0 e O
; m ; Yit1 = 9o (Xe, A, W) unknown

Goal: maximize

IE[ZI?O:O Vth+1]
reward 0 <y <1 fixed, known

Yiv1, Regq

observation

RL= problems, # techniques!!

. Offline learning https://qoo.qliftTFSA

o Learn a good controller given some data collected from interacting
with the system — batch RL

« Online learning

o Interact with the system with the goal of finding a good controller
with the least number of interactions — pure exploration

o Interact with the system with the goal of collecting as much reward
as possible — the exploration problem

. Learn from a simulator

o Find a good controller/action for the simulated system (or beyond)
with minimal computation — planning (with a simulator)

The modus operandi in RL
(S machine learning)

minimal modeling

maximum compute

Does it work? Why (now)?

Some landmark results

. DeepMind:

o Atari
o AlphaGo/Alpha Zero

Single RL algorithm learning to
play 49 Atari games @ human level
or beyond

by S5 = ==, g
Single RL algorithm defeating world-
champion in Go & best chess program

. Others:

o OpenAl Five: Dota-2 agents
m Capture the flag (Deepmind)

o Google Brain & X:
vision-based grasping

v

Autonomous learning of Defeating amateur human teams in
vision-based grasping Dota-2

Vision-based grasping -

Y;: 472x472 RGB images, gripper state helght above
ground, ¥; = X . I TR

A;: 3D gripper displacement,
2D rotation, ?rlpper open/close,

termination

: success or failure at the “end”,
flxed cost per time step

https://goo.gl/kTMcCb
Kalashnikov et al. (arXiv, 2018)

Episodes: 20 steps, learned stopping Autonomous Iearning of vision-

Xip1 = fO(Xt‘At; Wt)
Yer1 = 9o (Xe, Ap, W)
Ripq = 19(Xe, Ap, W)

based grasping
e RL on a physical system
e High success rate (78%— 96%)

Intelligent, robust, closed-loop
behavior

Why now? B
y il
. Reduce everything to (some form of)
optimization: DP (=use value functions)
Il (7

. Flexible models:
o Deep neural networks, ReLu, LSTM, ConvNet,.. =

. Large scale computation (GPU, TPU, Cloud, ..)

. Software frameworks, SGD!
1) LT

. Commercial interest, funding @
=

. Rapidly growing, very active community

When to use off-the-shelf ML/RL?

. Mathematical modeling is painful to Impossible

o E.g., complex observations (vision, text, ...)
. Task can be specified as an optimization/constraint
satisfaction problem

. Access to lots of data

o High-fidelity simulator can be built
o High throughput experimentation

« Access to huge-scale compute

. A priori verifiability is not a major concern

o Simulator can be trusted
o Physical experiments/online learning are feasible and sufficient

The core ideas

How RL works (~1990s))

Incrementally produce policies! ny, ,, ...
How?
1. Value-based policy search a.k.a. approximate dynamic
programming (ADP)
< all the methods In “success stories” are based on ADP!

2. Direct policy search: kt™-order optimization, 0 < k < 2

m FDSA, SPSA, Monte-Carlo (k = 0),
m SGD=REINFORCE (k = 1), Adam, momentum, Batchnorm, ...
m LBEGS, K-FAC, .. (k = 2)
|

Name of the game: Variance reduction Models?
Not really.. Could be.. Should be!

policy = feedback controller, static or dynamic

Dynamic programming RGPy =
(optimal control) E[h(f (x, a, W))]

o Value functions: Q" (x,a) = E; g =a x,=x[2t=0 V" R¢]
« Bellman optimality equation: V(x,a) € X XA:

Q*(x,a) = r(x,a) + v/ P(dy|x, a) maxQ”*(y,a’) i |
- , = ~ SN
(TQ*)(x,a) Richard E. Bellma
(1920-1984)

I J— — :. -)

° T: IRXXA iy RXXA
¢ =g No state aliasing!

Xt — Yta

or some known

function of it..

o Optimal policy: m*(x) = arg max Q*(x, a)
a

» Classic DP: Compute Q% use greedy policy |
« Methods: Value-iteration, policy iteration, linear programming

Function approximation

» Value iteration: Q1 =TQ;, - O
o Converges geometrically

« T(Q is intractable:
o (TQ)(x,a) = r(x,a) + [P(dylx,a) max Q(y,a")

« Set up regression problem to “learn” T Q, using eg neural net!

hidden layer 1 hidden layer 2 hidden layer 3

o Sample (XiiAi) = s,
Vi =rog(X;, A, W) +y max Q(fo (X, A, W), a’) &

= 2

Variations %
Alpha Zero!

. Between value and policy iteration:
o TMr+1(x) = argmax,(TPQy)(x,a),p =2 0
o i — Tgkﬂri q €{1,2,..,%}

. Use incremental learning methods (“recursive updates”,
“stochastic approximation”, TD-learning, ...)

="classification”
="regression”

. Modify the operators involved: A-update, entropy
regularization, approximate greedification, ...

. Recycle data (“replay”); importance weighting
. Optimize data collection, parallelize computation

..does this work?

Some landmark results

. DeepMind:

o Atari
o AlphaGo/Alpha Zero

Single RL algorithm learning to
play 49 Atari games @ human level
or beyond

by S5 = ==, g
Single RL algorithm defeating world-
champion in Go & best chess program

. Others:

o OpenAl Five: Dota-2 agents
m Capture the flag (Deepmind)

o Google Brain & X:
vision-based grasping

v

Autonomous learning of Defeating amateur human teams in
vision-based grasping Dota-2

..and failures..

From: Boyan & Moore: “Generalization in Reinforcement
Learning: Safely Approximating the Value Function”, NIPS-7,

1995.
fontinuous Gridworld
52
0.8
0.6)
> 1
0 4 L
0.2

0.20.40.6 0.8 1
X

Goal position - :
With thanks to Justin Boyan

u is the uniform distribution, quadratic polynomials used for value-function approximation

ada newmainets. ...

Car-on-the-Hill J*(pos,vel)

Iteration 11

Iteration 201

..or trivial function approximation..

@ Bellman operator:

@ Tsitsiklis & Van Roy (1996) (TV)(x1) = 0+~V(x)
@ State space: X = {xq, X} (TV)(x) = 0+~V(x).
@ Dynamics:
0 @ Function-space:
V F={0sp|0 R},
0
;1/—\}; o(x1) =1, ¢(x2) = 2.

Iteration:

Otr1 = argming||0¢ — T(6:9)||2
— argming(6 — v26;)% + (20 — v260;)? = (6/5)0; — +o0

u is the uniform distribution

Poor outlook for ADP

@ ’In light of these experiments, we conclude that the
straightforward combination of DP and function
approximation is not robust.” (Boyan & Moore, NIPS-7,
1995)

@ Unfortunately, many popular functions approximators, such
as neural nets and linear regression, do not fall in this?
class (and in fact can diverge). (G. Gordon, ICML, 1995).

But then why does it work for the “landmark results™?

does 1t work?

Wh en Covariqte-shift
Theorem (Sz., Munos, 2005): . —
14

Approximation ”V* — V”K”p’p < (1 &)/)2 {C(p' u)l/p € 62}

error

g BL L
]‘ ’ |

R. Munos A.m. Farahmand B.A. Pires

e, = d(TF,F) + poly(—E2, “E 1og(K), dim(F)) ‘ |

p—
€, = const X]/K Estimation
error

Range of V'* ~ ﬁ We need both e;,6, K 1 —y

Extensions (2005-2010): Single sample path, |A| = oo,
regularization, classification, ...

We made it work!
(with A. Antos)

Lesson: How to make ADP work?

Need to control all terms! off-policy problem

¢

« C(p,n): Sampling distr. u should dominate
pizoY Py
- Change u as you go, change policies slowly, ...
. Make approximation error d(TF,F) small:
o Deep neural nets, LSTM, convnets, ...

. Make sample size large to control estimation error
o Large compute

..and In practice..

Covariate shift Azl el Estimation error Computation
error platform

ConvNet, relatively 50M frames, 38

Atari2600 - DQN Replay buffer shallow days GPUs
AlohaZero Small learning rate Deep convnet, 700,000x4096=28 5000 TPUv1, 64
P J residual blocks B TPUv2
ObenAl Five Penalize fast Large network, N*180 years, N= 256 GPUs and
P changes (PPO) 1024 LSTM units no. days 128,000 CPU
Vision-based Soft improvement Deeb convnet. 1.2 580K offline 1000 machines,
in OPT, slowly P ' grasps + 28K 14K cores, 10

grasping (QT-Opt) M params

mixing in new data online grasps GPUs

Open problem #1

. Goal: Find a good policy/controller
. Setting: Access to a (stochastic) simulator

. Assumption:

> Given a function approximator (linear, or not) that can
represent/”learn” the optimal value function! with small error

. (When) can we do this in polynomial time? How good a
policy can we find?

. Note: Assumption much weaker than used by above ADP
result!

1And/or optimal policy/stationary distribution of optimal policy/..

A Linearly Relaxed Approximate Linear Program

|
for Markov Decision Processes
Chandrashekar Lakshminarayananf, Shalabh Bhatnagar*, and Csaba Szepesvaril

IEEE TAC 63(4), 1185-1191, 2018

mir}i c' dr c>01Tc=1
rclR W, € [0, Oo)Sxm’ K= [0, oo)S

st.) W,/ ®r>3 W, (ga+aP,®r) Vil y = max

By = amax [|[Flley <1
a
Y € span(®P)

Theorem: Let € = irﬁ{kllj* — ®7|| 001y, JLRA = PTLRA , WheETE 11 R4 IS the
re

solution to the above LP. Then, under the said assumptions,
T

2
V" — Jurallie < -8, (B€e + ll/are — Jirallooy)

, “On constraint sampling in the linear program-

P. .J 3 Schweit.zer e.lnd A Seidman.n, “Gen.e?alized polyno’-’ D.' P. de Faru;s and B. V?ln Roz, Thc? linear prog.ram’-, R e e St
mial approximations in Markovian decision processes, T A8 aDDIDAG to approximate dynamic programming, Mathematics of Operations Research, vol. 29, pp. 462—
Journal of Mathematical Analysis and Applications, Operations Research, vol. 51, pp. 850-865, 2003. 478. 2004.

vol. 110, pp. 568-582, 1985.

On the exploration problem

Learning cheaply, online

. Goal: Interact with a “real” system
and collect as much reward as possible!

« Performance metric:

- Total reward collected, or..

- Regret: Measure of learning speed
"Difference to a baseline”
m Regret is invariant to shifting the rewards

m Scale fixed: Algorithms can be compared across different
environments

Bandit problems

o i

P(payoff=1)=0.1 P(payoff=1)=0.5 P(payoff=1)=0.2

Xes1 = Xe» YVev1 = Reyr, Req = 1(Ag, W)

Regret = n max E[r(a, W)] — X724 R,
a

Bandits vs. (episodic) MDPs
Action —Q/ Environment _Q/

Episodic Trajectory

Environment b—— and rewards

New book!

Ba n d it Sonones I i d e http://banditalgs.com

« Ad-hoc exploration: Good on 100 om0
some instances, bad on others wol | ZBrc on 100
: —— ETC (optimal m)
o Explore-then-commit (ETC) — UCB

D
o
T
|

o e-greedy, Boltzmann/Gibbs

Expected regret
W
(@)

o Planned exploration reaches
optimal regret for all instances

DO
o

0 0.2 0.4 0.6 0.8
A

o UCB, posterior sampling a.k.a.
Thompson Sampling’ 2 arms, unit variance Gaussian rewards

with means 0 and —A, horizon 1000

Open problem #2

. Goal: Collect as much reward as possible
. Setting: Interacting with an unknown environment

. Assumption:

> Given a function approximator (linear, or not) that can
represent/”learn” the optimal value function! with small error

. How big will be the regret? Can this be done with
polynomial time computation? When?

« Note: Much harder than problem #1

1And/or optimal policy/stationary distribution of optimal policy/..

An illustration of the differences

Video: courtesy of lan Osband

Partial results

. Linear Quadratic Regulation

. Optimism gives O(VT) regret
(Abbasi-Yadkori, Sz., COLT'11)

Xer1 = AXe + BUp + Wiy
. Current work/open = X,

> Computational efficiency = X,/ 0X, + U/ RU,

o Regret efficiency

o Non-asymptotic

o Dependence on instance 1 o

- Model-free, 0(T3/*) regret lim ZE[X: 2 c¢]
T—oo T

(Lazic, Abbasi-Yadkori, Sz., 2018)
A, B are unknown, W, ~ N(0, 1)

Goal: minimize

Conclusions

Current approach in ML/RL

minimal modeling

maximum computation

Did 1t work?

. Yes, a few times..

. Requirements:
o Task can be specified as an optimization/constraint
satisfaction problem
- Access to loads of data
o Access to huge-scale compute

Can we overdo learning?

. Meta-learning, evolution, learning to plan, learning symbol
manipulation, ...

. Why?
- Because It worked
- Seamless integration with the rest of the architecture

. Why not?

- Combinatorial explosion
o Slow
o Lack of understanding, transparency, verifiability, ..

What else i1s missing?

. Learning and using models in an effective
manner

o Learn “planner-friendly” models
- Models that work despite complex sensory inputs
o Multiscale problems (fine-coarse-huge)

. Learning from sparse/no-reward reward
o Same problem as learning good models?

Questions?

| rQUQSELOM

