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controller

plantu(t) x(t+1)-xd(t) K

z-1

control approach #1: feedback control

problem: requires very fast feedback loop



controller

plantu(t) x(t+1)-xd(t) K

z-1
LQR

control approach #2: model-based feedback control

problem: requires fast feedback loop and inverse model

model-1



controller

simulator
"model”u(t) x(t+1:T)-xd(t) K

z-1

plantu(t)

x(t+1)

control approach #3: model-reference control

simulator "dreams" the future, aka predictive coding 

problem: how do I get this model?



problems

1) engineered models are expensive to set up


2) engineered models are expensive to compute


3) engineered models do not scale



we can write

we really want to represent p(x)

p(x) =

Z
p(x | z) p(z) dz

z x



Two problems: 


(1) how do we shape     to carry the right information of     ?  A: We don't hand-design it.  
     Assume it is a Gaussian pd.


(2) how do we compute the integral?  It is intractable (we only have the data; need MCMC)


we really want to represent p(x)

p(x) =

Z
p(x | z) p(z) dz

p(z) x

z x



                                                            


Trick to do efficient MCMC:


       (1) we choose a specific      and look in its neighbourhood (to find    that most likely produced it)


       (2) use                    to sample the corresponding       


       (3) evaluate                     there

we really want to represent 

p(z | x) p(z)

p(x) =

Z
p(x | z) p(z) dz

x

p(x | z)

p(z)
bummer, w

e don't h
ave it

p(x)

z xx



                                                            


Trick to do efficient MCMC:


       (1) we choose a specific      and look in its neighbourhood (to find    that most likely produced it)


       (2) use                    to sample the corresponding       


       (3) evaluate                     there

we really want to represent 

p(z)

p(x) =

Z
p(x | z) p(z) dz

x

p(x | z)

p(z)

p(x)

q(z | x)

z xx



minimise Kullback-Leibler to make q look like p

KL[q(z|x)kp(z|x)] =
X

z

q(z|x) log q(z|x)
p(z|x)

= E[log q(z|x)� log p(z|x)]

= E


log q(z|x)� log

p(x|z)P (z)

P (x)

�

= E[log q(z|x)� log p(x|z)� log p(z) + log p(x)]

log p(x)�KL[q(z|x)kp(z|x)] = E[log p(x|z)� (log q(z|x)� log p(z))]

= E[log p(x|z)]�KL[q(z|x)kp(z)]



log p(x)�KL[q(z|x)kp(z|x)] = E[log p(x|z)]�KL[q(z|x)kp(z)]

we can get our generative model...
...while we want q to be close to p...
...by maximising the MLE for x given z...

(optimising the reconstruction by sampling)
...and please make z equal to the prior.

this is why I chose argmax.ai for our lab website

argmax✓
I need this

I can compute this



efficient computation as a neural network: 
the Variational AutoEncoder

x = reconstruction of x 
p(x|z) 

system state x

latent space z 
q(z|x)

encoder
decoder}

}

~

probability density with (Gauss) prior

loss = reconstruction loss
           + KL[q(z|x) || prior]

"nonlinear PCA" 

Durk Kingma and Max Welling, 2013

Rezende, Mohamed & Wierstra, 2014

z x



preprocessing sensor data with VAE—emerging properties
Maximilian Karl, Nutan Chen, Patrick van der Smagt (2014)
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Deep Variational Bayes Filter

Graphical model assumes 
latent Markovian dynamics 

i) Observations depend only on the current 
state, 

ii) State depends only on the previous state and 
control signal,zt zt+1 zt+2

xt xt+1 xt+2

ut ut+1

p(x1:T , z1:T | u1:T ) = ⇢(z1)
T�1Y

t=1

p(zt+1 | zt,ut)
TY

t=1

p(xt | zt)
<latexit sha1_base64="451VOAlQ67V5poN/XQQhpmDSxUM="></latexit><latexit sha1_base64="Ixq18gsPFA3NVFov5Lbq4w01tg4="></latexit><latexit sha1_base64="Ixq18gsPFA3NVFov5Lbq4w01tg4="></latexit><latexit sha1_base64="xj+iNcZHmN+e6TRSPrdvrVIbdkI="></latexit>
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Deep Variational Bayes Filtering: 
filtering in latent space of a variational autoencoder

z(t)
z(t+1)

system state x(t)

system state x(t+1)

A z(t) + 
B u(t) + 
C x(t+1)

A z(t+1) + 
B u(t+1) + 
C x(t+2)

system state x(t+2)

z(t+2)

system state x(t+1) = process noise system state x(t+2) = process noise

~~

~~

system state x(t)~

Karl & Soelch & Bayer & van der Smagt, ICLR 2017

control input u(t) control input u(t+1)



Deep Variational Bayes Filter: example

ml2Ï̈(t) = ≠µÏ̇(t) + mgl sin Ï(t) + u(t),

transition model: z(t+1) = A z(t) + B u(t) + C x(t+1)



Formula E use case with Audi Motorsport

Audi Motorsport is interested in optimal energy strategies. 
Knowing future battery temperature is key.


Approach:


Learn simulator of battery temperature given race conditions 
and control commands.

Use simulator to choose strategy that has best temperature 
for final performance.


Project… 


… initiated end of August, 
… started a week later,  
… deployed to hardware during test in November 2017,  
… tested on car during race early December 2017.


Results: 


error < ±1 degree in 50% of the races  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Deep Variational Bayes Filter with DMP

zt zt+1 zt+2

xt xt+1 xt+2

ut ut+1

transition model:
⌧ z̈t+1 = ↵(�z(z

goal � zt)� żt) + ft + ✏
<latexit sha1_base64="V9YsHb9yqwoZQLZOOcyO0HhlUIk=">AAACYnicbVFNTxsxEPVuS0vTAqE9lsMIVCkoarTLpVwqIXrhSKUGkOI0mnVmEwvvh+xZpLDa/9LfxK2nXvpD8CahQtCRLL15zzPjeU5Kox1H0e8gfPFy49XrzTedt++2tne6u+8vXFFZRUNVmMJeJejI6JyGrNnQVWkJs8TQZXL9rdUvb8g6XeQ/eFHSOMNZrlOtkD016S4kYwVyOi0YoJZJCrfNpOZ+3MBXkGjKOfZkQoyTW+it9Z8yQ57bDOpZgaaBz/8K+dAnsu31wICn+qss9brHkkqnTTv7IBpEy4DnIF6Dg5N92f8lhDifdO98Z1VllLMy6Nwojkoe12hZK0NNR1aOSlTXOKORhzlm5Mb10qIGPnlmCmlh/ckZluzjihoz5xZZ4m+2y7mnWkv+TxtVnB6Pa52XFVOuVoPSygAX0PoNU21JsVl4gMpq/1ZQc7So2P9Kx5sQP135Obg4GsTRIP7u3TgVq9gUH8W+6IlYfBEn4kyci6FQ4k+wEWwHO8HfsBPuhh9WV8NgXbPOHyLcuwcevrVx</latexit><latexit sha1_base64="pfwyswTS57MReyHjX4GVbk+rI98=">AAACYnicbVFNb9NAEF27FEqANoUjHEatkIIiIpsLXJAiuHAsEmkrZUM03oyTVdcf2h0juZb/RX9Zbz31wg9hnaQItYy00pv3dmZ23ial0Y6j6CYIdx7tPn6y97T37PmL/YP+4ctTV1RW0UQVprDnCToyOqcJazZ0XlrCLDF0llx87fSzX2SdLvIfXJc0y3CZ61QrZE/N+7VkrEAuFgUDNDJJ4bKdNzyMW/gMEk25woFMiHF+CYOt/lNmyCubQbMs0LTw/m8hv/OJ7HrdMeCp4SZLve6xpNJp080+jkbROuAhiLfgeHwkh1c34/pk3r/2nVWVUc7KoHPTOCp51qBlrQy1PVk5KlFd4JKmHuaYkZs1a4taeOuZBaSF9SdnWLP/VjSYOVdnib/ZLefuax35P21acfpp1ui8rJhytRmUVga4gM5vWGhLik3tASqr/VtBrdCiYv8rPW9CfH/lh+D0wyiORvF378YXsYk98VociYGIxUcxFt/EiZgIJW6D3WA/OAh+h73wMHy1uRoG25ptfhfhmz8oKLb3</latexit><latexit sha1_base64="pfwyswTS57MReyHjX4GVbk+rI98=">AAACYnicbVFNb9NAEF27FEqANoUjHEatkIIiIpsLXJAiuHAsEmkrZUM03oyTVdcf2h0juZb/RX9Zbz31wg9hnaQItYy00pv3dmZ23ial0Y6j6CYIdx7tPn6y97T37PmL/YP+4ctTV1RW0UQVprDnCToyOqcJazZ0XlrCLDF0llx87fSzX2SdLvIfXJc0y3CZ61QrZE/N+7VkrEAuFgUDNDJJ4bKdNzyMW/gMEk25woFMiHF+CYOt/lNmyCubQbMs0LTw/m8hv/OJ7HrdMeCp4SZLve6xpNJp080+jkbROuAhiLfgeHwkh1c34/pk3r/2nVWVUc7KoHPTOCp51qBlrQy1PVk5KlFd4JKmHuaYkZs1a4taeOuZBaSF9SdnWLP/VjSYOVdnib/ZLefuax35P21acfpp1ui8rJhytRmUVga4gM5vWGhLik3tASqr/VtBrdCiYv8rPW9CfH/lh+D0wyiORvF378YXsYk98VociYGIxUcxFt/EiZgIJW6D3WA/OAh+h73wMHy1uRoG25ptfhfhmz8oKLb3</latexit><latexit sha1_base64="6BxCZT2tXbXq1HPUK83BBib9Ib0="></latexit>

Maximilian  
Karl

Nutan 
Chen



Deep Variational Bayes Filtering: 
DMPs in latent space of a variational autoencoder

unsupervised



latent space z(t) is not straight!

latent space sampling #2: this is the optimal "shortest" path

unsupervised

Chen & Klushyn & Kurle & Bayer & van der Smagt, 2018



how does Geodesics work?

Since the inference and generative models are tightly coupled, an inflexible variational posterior has
a direct impact on the generative model, causing both models to underuse their capacity.

In order to learn richer latent representations and achieve better generative performance, the
importance-weighted autoencoder (IWAE) [Burda et al., 2015, Cremer et al., 2017] has been intro-
duced. It treats q�(z|x) as a proposal distribution and obtains a tighter lower bound using importance
sampling:

ln p✓(X) =
NX

i=1

ln p✓(x
(i)) �

NX

i=1

E
z(i)
1 ,...,z(i)

K ⇠q�(z(i)|x(i))

h
ln

1

K

KX

k=1

w(i)
k

i
, (3)

where w(i)
k are the importance weights:

w(i)
k =

p✓(x(i)|z(i)k ) p✓(z
(i)
k )

q�(z
(i)
k |x(i))

. (4)

The IWAE is the basis of our approach, since it can yield an accurate generative model.

2.2 Riemannian geometry

A Riemannian manifold is a differentiable manifold M with a metric tensor G. It assigns to each
point z an inner product on the tangent space TzM , where the inner product is defined as:

hz0, z0iz := z0T G(z) z0 (5)

with z0 2 TzM and z 2 M . Additionally, consider a curve � : [0, 1] ! RNz in the Riemannian
manifold, transformed by a continuous function f(�(t)) to an Nx-dimensional observation space,
where �(t) 2 RNz . The length of the curve in the observation space is defined as

L(�) :=

Z 1

0

����
@f(�(t))

@t

���� dt =
Z 1

0

����
@f(�(t))

@�(t)

@�(t)

@t

���� dt =
Z 1

0

����J
@�(t)

@t

���� dt, (6)

where J is the Jacobian. Eq. (6) can be expressed as

L(�) =

Z 1

0

q⌦
�0(t), �0(t)

↵
�(t)

dt (7)

with the metric tensor G = JTJ.

3 Approximating the geodesic

In this work, we are primarily interested in length-minimizing curves between samples of generative
models. In Riemannian geometry, locally length-minimizing curves are referred to as geodesics. We
treat the latent space of generative models as a Riemannian manifold. This allows us to parametrize
the curve in the latent space, while distances are measured by taking into account distortions from
the generative model.

We use a neural network g! : R ! RNz to approximate the curve � in the latent space, where !
are the weights and biases. The function f from Eqs. (6) corresponds to the mean of the generative
model’s probability distribution hgen : RNz ! RNx and the components of the Jacobian are

Ji,j =
@xi

@zj
. (8)

xi and zj denote the i-th and j-th element of the generated data points x and latent variables z,
respectively, with x 2 RNx and z 2 RNz .

We approximate the integral of Eq. (7) with n equidistantly spaced sampling points of t 2 [0, 1]:

L(g!(t)) ⇡
1

n

nX

i=1

q
hg0!(ti), g0!(ti)ig!(ti) =

1

n

nX

i=1

q
g0!(ti)

TJTJg0!(ti). (9)

3

The term inside the summation can be interpreted as the rate of change at point g!(ti), induced by
the generative model, and we will refer to it as velocity:

�(t) =
q
hg0!(ti), g0!(ti)ig!(ti). (10)

An approximation of the geodesic between two points in the latent space is obtained by minimizing
the length in Eq. (9), where the weights and biases ! of the neural network g!(t) are subject to
optimization.

With the start and end points of the curve in the latent space given as z0 and z1, we consider the
following constrained optimization problem:

min
!

L(g!(t))

s.t. g!(0) = z0, g!(1) = z1. (11)

3.1 Dealing with boundary constraints

To satisfy the boundary constraints in Eq. (11), we shift and rescale the predicted line to get

z(t) = Aẑ(t)�B, (12)

where

A =
z0 � z1

ẑ(0)� ẑ(1)
and B =

z0ẑ(1)� z1ẑ(0)

ẑ(0)� ẑ(1)
.

ẑ and z are the outputs of the neural network g! before and after normalization, respectively. The ad-
vantage of this proceed is that the optimization problem in Eq. (11) simplifies to find min! L(g!(t)).

3.2 Smoothing the metric tensor

To ensure the geodesic is following the data manifold—which entails that the manifold distance is
smaller than the Euclidean distance—a penalization term is added to smooth the metric tensor G. It
leads to the following loss function:

L = L+ �skGk2, (13)

where �s > 0 acts as a regularization coefficient. This optimization step is implemented as a post-
processing of Eq. (11) via singular-value decomposition (SVD)

G = USVT , (14)

where the columns of U are the eigenvectors of the covariance matrix GGT , and the columns of
V are the eigenvectors of GTG. The diagonal entries in S contain singular values with scaling
information about how a vector is stretched or shrunk when it is transformed from the column space
of G to the row space of G.

Minimizing the term �skGk2 is equivalent to a low-rank reconstruction for G

Ĝ = Urdiag

⇢
s3i

s2i + �s

�r

i=1

VT
r , (15)

where r is a pre-defined lower rank of G. �s rescales the singular values of G nonlinearly, which al-
lows making the smaller singular values much smaller than the leading singular values. The smooth-
ing therefore weakens the reconstructed off-diagonal values of Ĝ which correspondingly reduces the
manifold distance dramatically compared to the Euclidean distance. The smoothing effect is that a
higher �s augments the difference between the Euclidean interpolation and the path along the man-
ifold.

4 Experiments

We evaluate our approach by conducting a series of experiments on three different datasets—an
artificial pendulum dataset, a simulated robot arm dataset and the human motion dataset2.

2http://mocap.cs.cmu.edu/
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Since the inference and generative models are tightly coupled, an inflexible variational posterior has
a direct impact on the generative model, causing both models to underuse their capacity.

In order to learn richer latent representations and achieve better generative performance, the
importance-weighted autoencoder (IWAE) [Burda et al., 2015, Cremer et al., 2017] has been intro-
duced. It treats q�(z|x) as a proposal distribution and obtains a tighter lower bound using importance
sampling:

ln p✓(X) =
NX

i=1

ln p✓(x
(i)) �

NX

i=1

E
z(i)
1 ,...,z(i)

K ⇠q�(z(i)|x(i))

h
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k=1

w(i)
k

i
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where w(i)
k are the importance weights:

w(i)
k =

p✓(x(i)|z(i)k ) p✓(z
(i)
k )

q�(z
(i)
k |x(i))

. (4)

The IWAE is the basis of our approach, since it can yield an accurate generative model.

2.2 Riemannian geometry

A Riemannian manifold is a differentiable manifold M with a metric tensor G. It assigns to each
point z an inner product on the tangent space TzM , where the inner product is defined as:

hz0, z0iz := z0T G(z) z0 (5)

with z0 2 TzM and z 2 M . Additionally, consider a curve � : [0, 1] ! RNz in the Riemannian
manifold, transformed by a continuous function f(�(t)) to an Nx-dimensional observation space,
where �(t) 2 RNz . The length of the curve in the observation space is defined as

L(�) :=

Z 1

0

����
@f(�(t))

@t

���� dt =
Z 1

0

����
@f(�(t))

@�(t)

@�(t)

@t

���� dt =
Z 1

0
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@�(t)
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���� dt, (6)

where J is the Jacobian. Eq. (6) can be expressed as

L(�) =

Z 1
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dt =

Z 1
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with the metric tensor G = JTJ.

3 Approximating the geodesic

In this work, we are primarily interested in length-minimizing curves between samples of generative
models. In Riemannian geometry, locally length-minimizing curves are referred to as geodesics. We
treat the latent space of generative models as a Riemannian manifold. This allows us to parametrize
the curve in the latent space, while distances are measured by taking into account distortions from
the generative model.

We use a neural network g! : R ! RNz to approximate the curve � in the latent space, where !
are the weights and biases. The function f from Eqs. (6) corresponds to the mean of the generative
model’s probability distribution hgen : RNz ! RNx and the components of the Jacobian are

Ji,j =
@xi

@zj
. (8)

xi and zj denote the i-th and j-th element of the generated data points x and latent variables z,
respectively, with x 2 RNx and z 2 RNz .

We approximate the integral of Eq. (7) with n equidistantly spaced sampling points of t 2 [0, 1]:

L(g!(t)) ⇡
1

n

nX

i=1

q
hg0!(ti), g0!(ti)ig!(ti) =

1

n

nX

i=1

q
g0!(ti)

TJTJg0!(ti). (9)

3

Since the inference and generative models are tightly coupled, an inflexible variational posterior has

a direct impact on the generative model, causing both models to underuse their capacity.

In order to learn richer latent representations and achieve better generative performance, the

importance-weighted autoencoder (IWAE) [Burda et al., 2015, Cremer et al., 2017] has been intro-

duced. It treats q
� (z|x) as a proposal distribution and obtains a tighter lower bound using importance

sampling:
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where w (i)k are the importance weights:
w (i)k

= p
✓ (x (i)|z (i)k ) p

✓ (z (i)k )

q
� (z (i)k |x (i))

.

(4)

The IWAE is the basis of our approach, since it can yield an accurate generative model.
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z 0T
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(z) z 0

(5)

with z 0
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M
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z
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where �(t) 2 R N
z. The length of the curve in the observation space is defined as

L(�) := Z
1
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where J is the Jacobian. Eq. (6) can be expressed as
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In this work, we are primarily interested in length-minimizing curves between samples of generative

models. In Riemannian geometry, locally length-minimizing curves are referred to as geodesics. We

treat the latent space of generative models as a Riemannian manifold. This allows us to parametrize

the curve in the latent space, while distances are measured by taking into account distortions from

the generative model.

We use a neural network g
! : R

!
R N

z

to approximate the curve � in the latent space, where !

are the weights and biases. The function f from
Eqs. (6) corresponds to the mean of the generative

model’s probability distribution h gen
: R N

z!
R N

x

and the components of the Jacobian are

J
i,j = @x

i@z
j .

(8)

x
i and z

j denote the i-th and j-th element of the generated data points x and latent variables z,

respectively, with x 2 R N
x

and z 2 R N
z.

We approximate the integral of Eq. (7) with n equidistantly spaced sampling points of t 2
[0, 1]:

L(g
! (t)) ⇡ 1

n
nX

i=
1

q
hg 0
! (ti ), g 0

! (ti )i
g
! (t

i ) = 1
n

nX
i=
1

q
g 0
! (ti ) T

J T
Jg 0
! (ti ).

(9)

3

curve
 in z

neural network

Our goal is to enable smooth interpolations between the reconstructed images of an importance-
weighted autoencoder and to differentiate between classes within the latent space. To show that
the paths of geodesics can differ from Euclidean interpolations, the following experiments mainly
focus on comparing geodesics with the Euclidean interpolations as well as the reconstructed data
generated from points along their paths.

4.1 Training

In all experiments, we chose a Gaussian prior p(z) = N (0, I). The inference model and the like-
lihood are represented by random variables of which the parameters are functions of the respective
conditions.

For the inference model we consistently used a diagonal Gaussian, i.e. q�(z|x) =
N (µ�(x), diag(�2

�(x))). Depending on the experiments, the likelihood p✓(x|z) either represents
a Bernoulli variable B(r✓(z)) or a Gaussian N (µ✓(z),�2). � is a global variable and the parameters
r✓, µ✓,�2

✓ , µ�,�2
� are functions of the latent variables represented by neural networks parameterized

by ✓ and � respectively.

The hyperparameters of g! are summarized in Table 1. We used sigmoid, tanh and softplus activation
functions in the generative model (see App. A and B).

To avoid local minima with narrow spikes of velocity but low overall length, we validate the result
during training based on the maximum velocity of Eq. (10) and the path length L + �� maxt �(t),
where �� is a hyper-parameter.

We found that training with batch gradient descent and the loss defined in Eq. (9) is prone to local
minima. Therefore, we pre-train the neural network g! on n random parametric curves. As random
curves we chose Bézier curves [De Casteljau, 1986] of which the control points are obtained as fol-
lows: We take z0k̃/K̃+z1(K̃� k̃)/K̃, k̃ = 1, 2, . . . , K̃�1 as the centres of a uniform distribution,
with its support orthogonal to the straight line between z0 and z1 and the range (z1 � z0)/2. For
each of those random uniforms, we sample once, to obtain a set of K̃�1 random points zk̃. Together
with z0 and z1, these define the control points of the Bézier curve. For each of the n random curves,
we fit a separate g!(t) to the points of the curve and select the model g! with the lowest validation
value as the pre-trained model. Afterwards, we proceed with the optimization of the loss Eq. (9).

4.2 Visualization

There are several approaches to visualize the properties of the metric tensor, including Tissot’s
indicatrix. We use the magnification factor to visualize metric tensors during the evaluation, when
we have two latent dimensions. The magnification factor [Bishop et al., 1997] is defined as

MF :=
p
detG. (16)

To get an intuitive understanding of the magnification factor, it is helpful to consider the rule for
changing variables dx =

p
detJxdx0. This rule shows the relation between infinitesimal volumes

of different equidimensional Euclidean spaces. The same rule can be applied to express the rela-
tionship between infinitesimal volumes of a Euclidean space and a Riemannian manifold—with the
difference of using the MF instead of

p
detJx. Hence, the magnification factor visualizes the ex-

tent of change of the infinitesimal volume by mapping a point from the Riemannian manifold to the
Euclidean space [Gemici et al., 2016].

4.3 Pendulum

We created an artificial dataset of 16⇥ 16 pixel images of a pendulum with a joint angle as the only
degree of freedom and augmented it by adding 0.05 per-pixel Gaussian noise. We generated 15,000
pendulum images, with joint angles uniformly distributed in the range [0, 360). The architecture of
the IWAE can be found in Table 2.

Fig. 1 illustrates the trained two-dimensional latent space of the IWAE. The grayscale in the back-
ground is proportional to the magnification factor, whereas the rotation angles of the pendulum are
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Our approach is data-driven: deep neural networks, attention models and variational inference.

End-to-End SLAM

…

…

agent 
traversing map

inverse pose  
model & odometry

…

…

sensor 
fusion

…

…

…

…

attention model & 
grid-based map

…

…



mapping, localisation and 
planning—all in the same model. 

Navigation via optimal control:  
The cost at the goal is 0 and -1 
everywhere else. 

Optimisation is performed in a 
learned model and executed only 
after planning has finished.

optimal control of a learnt model



The Bayesian nature of the model 
allows a principled quantification 
of uncertainty. 

We can estimate how good the 
model knows certain regions of its 
environment. 

Optimal control drives the agent into 
unexplored regions.

exploration—maximise expected surprise



can it be efficiently computed?

Erwin Schrödinger, 1944: Negentropy
Klyubin et al, 2005: Empowerment
Wissner-Gross et al, 2013: Causal Entropic Forces

Karl & Sölch & Ehmck & Benbouzid & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv 2017

Emp(s) := max
p(a|s)

Z
p(a|s)

Z
p(s0|s, a) ln p(s0|s, a)

p(s0|s) ds0 da

Empowerment
max!

ZZ
p(z0,u | z) ln p(z0,u | z)

p(z0 | z)!(u | z) dz
0 du
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empowerment is the channel capacity between action      and the following state

how is efficient empowerment computed?

looking for the best state where each

action has a meaningful consequence

intractable

(computed for all actions)

plan
Karl & ... & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv, 2017
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empowerment on a pendulum

Empowerment on a pendulum



independent balls with 40-dimensional lidar sensors

unsupervised

Karl & ... & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv, 2017



control through DVBF: 
exploration



control through DVBF:  
after unsupervised learning with Empowerment

unsupervised

Karl & ... & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv, 2017





actions in lidar space                                         empowerment


