on variational inference and optimal control

Patrick van der Smagt Director of Al Research Volkswagen Group Munich, Germany

https://argmax.ai

ARGMAX.ai

VOLKSWAGEN GROUP AI RESEARCH

control approach #1: feedback control

problem: requires very fast feedback loop

 $-x(t+1) \rightarrow$

control approach #2: model-based feedback control

problem: requires fast feedback loop and inverse model

 $-x(t+1) \rightarrow$

control approach #3: model-reference control

problem: how do I get this model?

simulator "dreams" the future, aka predictive coding

1) engineered models are expensive to set up

2) engineered models are expensive to compute

3) engineered models do not scale

we can write

$$p(x) = \int p(x \mid z) \, p(z) \, dz$$

$$p(x) = \int p(x \mid z) \, p(z) \, dz$$

Two problems:

(1) how do we shape z to carry the right information of x? A: We don't hand-design it. Assume it is a Gaussian pd.

(2) how do we compute the integral? It is intractable (we **only** have the data; need MCMC)

$$p(x) = \int p(x \mid z) p(z) dz$$
Trick to do efficient MCMC:
(1) we choose a specific x and look in its neighbourhood (to find z that
(2) use $p(z \mid x)$ to sample the corresponding z
(3) evaluate $p(x \mid z)$ there

at most likely produced it)

$$p(x) = \int p(x \mid z) \, p(z) \, dz$$

Trick to do efficient MCMC:

(1) we choose a specific \mathcal{X} and look in its neighbourhood (to find \mathcal{Z} that most likely produced it)

(2) use $q(z \mid x)$ to sample the corresponding z

(3) evaluate $p(x \mid z)$ there

minimise Kullback-Leibler to make *q* look like *p*

$$\begin{aligned} \operatorname{KL}[q(z|x) \| p(z|x)] &= \sum_{z} q(z|x) \log \frac{q(z|x)}{p(z|x)} \\ &= E[\log q(z|x) - \log p(z|x)] \\ &= E\left[\log q(z|x) - \log \frac{p(x|z)P(z)}{P(x)}\right] \\ &= E[\log q(z|x) - \log p(x|z) - \log p(x|z)] \end{aligned}$$

 $\log p(x) - \mathrm{KL}[q(z|x) || p(z|x)] = E[\log p(x|z) - (\log q(z|x) - \log p(z))]$ $= E[\log p(x|z)] - \mathrm{KL}[q(z|x)||p(z)]$

$p(z) + \log p(x)$

efficient computation as a neural network: the Variational AutoEncoder

loss = reconstruction loss + KL[*q*(*z*|*x*) II prior]

"nonlinear PCA"

preprocessing sensor data with VAE—emerging properties

7

unsupervised

Maximilian Karl, Nutan Chen, Patrick van der Smagt (2014)

-4

Maximilian Karl

Nutan Chen

Deep Variational Bayes Filter

Graphical model assumes latent Markovian dynamics

state,

control signal,

T - 1 $p(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \mathbf{u}_{1:T}) = \rho(\mathbf{z}_1) \prod p(\mathbf{z}_{t+1} \mid \mathbf{z}_t, \mathbf{u}_t) \prod p(\mathbf{x}_t \mid \mathbf{z}_t)$ t=1

Maximilian Karl

Maximilian Sölch

Justin Bayer

i) Observations depend only on the current

ii) State depends only on the previous state and

Deep Variational Bayes Filtering: filtering in latent space of a variational autoencoder

Karl & Soelch & Bayer & van der Smagt, ICLR 2017

Deep Variational Bayes Filter: example

 $ml^2\ddot{\varphi}(t) = -\mu\dot{\varphi}(t) + mgl\sin\varphi(t) + u(t)$

transition model: z(t+1) = A z(t) + B u(t) + C x(t+1)

 \mathbf{Z}_2

 \mathbf{Z}_1

error $< \pm 1$ degree in 50% of the races

Audi Motorsport is interested in **optimal energy strategies**. Knowing future battery temperature is key.

Approach:

Learn simulator of battery temperature given race conditions and control commands.

Use simulator to choose strategy that has best temperature for final performance.

Project...

- ... initiated end of August,
- ... started a week later,
- ... deployed to hardware during test in November 2017,
- ... tested on car during race early December 2017.

Results:

Time [s]

baseline

our method

Philip Becker

Deep Variational Bayes Filter with DMP

Nutan Chen

Maximilian Karl

Deep Variational Bayes Filtering: **DMPs** in latent space of a variational autoencoder

J777788887777 4777777777777777777777777777777777 **ホイナナママススススススススススススススススプアアアアア** <u>ずずずずずずずすすううううううううたたたた</u>オオオオ **文文文文文夫夫夫夫夫夫夫夫夫夫夫夫夫夫夫夫夫夫夫** 在在在在在先先先先先先先先先先为多多多多多多多多多多 欠欠欠欠欠个个すうちょくたちちちち 欠欠欠欠个すずがガガガガ

unsupervised

latent space *z*(*t*) is not straight!

Chen & Klushyn & Kurle & Bayer & van der Smagt, 2018

unsupervised

how does Geodesics work?

Nutan Chen

Alexej Klushyn

Richard Kurle

 $\mathrm{d}t,$

...on a 6-DoF robot arm...

Active Learning based on Data Uncertainty and Model Sensitivity

Nutan Chen, Alexej Klushyn, Alexandros Paraschos, Djalel Benbouzid, Patrick van der Smagt

Al research, Data:Lab, Volkswagen Group

Deep Variational Bayes Filter with a map

∧RGMAX.ai

VOLKSWAGEN GROUP AI RESEARCH

Graphical model assumes global Map

iii) Observations are extracted from map through attention model based on current

iv) Latent state is identified with location.

Justin Bayer

Atanas Mirchev

Baris Kayalibay

End-to-End SLAM

Our approach is data-driven: deep neural networks, attention models and variational inference.

agent inverse pose traversing map model & odometry

sensor fusion

optimal control of a learnt model

mapping, localisation and planning—all in the same model.

Navigation via **optimal control:** The cost at the goal is 0 and -1 everywhere else.

Optimisation is performed in a **learned model** and executed only after planning has finished.

exploration — maximise expected surprise

The Bayesian nature of the model allows a **principled quantification** of uncertainty.

We can estimate how good the model knows certain regions of its environment.

Optimal control drives the agent into unexplored regions.

Empowerment $\mathbf{p}(\mathbf{z}', \mathbf{u} \mid \mathbf{z})$ $\operatorname{Emp}(s) := \max_{\omega} \iint p(\mathbf{z}', \mathbf{u} \mid \mathbf{z}) \ln \mathbf{z}$ - dz' du \mathbf{Z}

can it be efficiently computed?

Karl & Sölch & Ehmck & Benbouzid & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv 2017

Erwin Schrödinger, 1944: Negentropy Klyubin et al, 2005: Empowerment Wissner-Gross et al, 2013: Causal Entropic Forces

Karl

how is efficient empowerment computed?

Maximilian Sölch

empowerment is the channel capacity between action \mathbf{u}_t and the following state \mathbf{z}_{t+1} $\mathcal{E}(\mathbf{z}) = \max_{\omega} \mathcal{I}(\mathbf{z}', \mathbf{u} \mid \mathbf{z})$ $:= \mathrm{KL}(p(\mathbf{z}', \mathbf{u} \mid \mathbf{z}) \mid\mid p(\mathbf{z}' \mid \mathbf{z}) \,\omega(\mathbf{u} \mid \mathbf{z}))$ $= \iint p(\mathbf{z}', \mathbf{u} \mid \mathbf{z}) \ln \frac{p(\mathbf{z}', \mathbf{u} \mid \mathbf{z})}{p(\mathbf{z}' \mid \mathbf{z}) \,\omega(\mathbf{u} \mid \mathbf{z})} \, \mathrm{d}\mathbf{z}' \mathrm{d}\mathbf{u}$ intractable (computed for all actions) Angular velocity [rad/s] approximate with lower bound $\mathcal{I}(\mathbf{z}', \mathbf{u} \mid \mathbf{z}) \ge \iint p(\mathbf{z}', \mathbf{u} \mid \mathbf{z}) \ln \frac{q(\mathbf{u} \mid \mathbf{z}', \mathbf{z})}{\omega(\mathbf{u} \mid \mathbf{z})} \, \mathrm{d}\mathbf{z}' \mathrm{d}\mathbf{u} =$ $\mathcal{I} - \hat{\mathcal{I}} = \mathbb{E}_{\mathbf{z}' \sim p(\mathbf{z}' | \mathbf{z})} [\text{KL}(p(\mathbf{u} | \mathbf{z}', \mathbf{z}) || \mathbf{z}'_{\text{plan}})$

Karl & ... & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv, 2017

Maximilian

Philip Becker

Dialel Justin **Benbouzid Bayer**

looking for the best state where each action has a meaningful consequence

Angle [rad]

empowerment on a pendulum

independent balls with 40-dimensional lidar sensors

Karl & ... & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv, 2017

unsupervised

empowered policy random action 0.035 0.030 0.025 0.020 0.015 0.010 0.005 0.000 0.0 0.5 1.0 1.5 2.0

0.040

(d) Distance between two balls.

control through DVBF: exploration

control through DVBF: after unsupervised learning with Empowerment

unsupervised

actions in lidar space

empowerment