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control approach #1: feedback control

controller

-

—X4(1)

N\

4

\

~

J

problem: requires very fast feedback loop

u(t)

plant

—X(t+1) —

B



control approach #2: model-based feedlback control
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problem: requires fast feedback loop and inverse model



control approach #3: model-reference control
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simulator "dreams" the future, aka predictive coding

problem: how do | get this model?



problems

1) engineered models are expensive to set up
2) engineered models are expensive to compute

3) engineered models do not scale



we really want to represent p(x)

we can write

p(x) = / p(z | 2)p(z) dz




we really want to represent p(x)

p(x) = / p(z | 2)p(z) dz

Two problems:

(1) how do we shape Z to carry the right information of Z? A: We don't hand-design it.
Assume it is a Gaussian pd.

(2) how do we compute the integral? It is intractable (we only have the data; need MCMCQC)



we really want to represent p(x)

pl) = / p(x | 2)p(z) dz
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Trick to do efficient MCMC: 606
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(1) we choose a s{go%(ﬁic & and look in its neighbourhood (to find <that most likely produced it)
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(2) use p(Z | 513) to sample the corresponding <

(3) evaluate p(ZE ‘ Z) there



we really want to represent p(x)

pl) = / p(x | 2)p(z) dz

& 2, &

Trick to do efficient MCMC:
(1) we choose a specific T and look in its neighbourhood (to find £that most likely produced it)

(2) use C](Z ‘ CU) to sample the corresponding <

(3) evaluate p(ZE ‘ Z) there



minimise Kullback-Leibler to make q look like p

KLg(z|z)|lp(z|z)]

log p(z) — KL[gq(z|z)||p(z]z)]
= Ellogp(z|z)] — KL[g(z|z)||p(2)]



this is why | chose argmax.ai for our lab website



efficient computation as a neural network:
the Variational AutoEncoder

loss = reconstruction loss
+ KL[q(zIx) | prior]

"nonlinear PCA"
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video: SynTouch, LLC

taxel values

unsupervised

preprocessing sensor data with VAE—emerging properties
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Deep Variational Bayes Filter

Maximilian Maximilian Justin
Karl S&lch Bayer

Graphical model assumes
latent Markovian dynamics

) Observations depend only on the current

state, B

i) State depends only on the previous state and

> control signal,
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filtering In latent space of a variational autoencoder

system state X(t) system state x(t+1) system state X(t+2)

Az(t)+ AZ(t+1)+
B u(t) + Lt | e— B (1) +
C x(t+1) C x(t+2)
A A
control input u(t) _ control input u(t+1) ,
system state x(1) system state x(t+1) = process noise system state x(t+2) = process noise

Karl & Soelch & Bayer & van der Smagt, ICLR 2017



eep Variational Bayes Filter: example

mlng t) = —uo(t) + mglsinp(t) + u(t

-3

transition model: z(t+1) = A z(t) + B u(t) + C x(t+1)
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Formula E use case with Audi Motorsport =
sl i
Philip
Audi Motorsport is interested in optimal energy strategies. Becker

Knowing future battery temperature is key.

') i T T T '
: £ i | | o o |
Approach: [0 %’/’j’:wf:]_
_ _ N e — o | | I
Learn simulator of battery temperature given race conditions o) ] L o |
and control commands. )
. 3 Temperature Prediction Error
Use simulator to choose strategy that has best temperature )
for final performance. j)
S -
Project... C -2
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. ay s E Time [s]
" |n|t|ated end Of Aug USt, . 3 Temperature Prediction Error
... Started a week later, 8 5 2
... deployed to hardware during test in November 2017, :
... tested on car during race early December 2017. gj
=3 200 400 600 800 1000 1200 1400
Results: Time )

error < 1 degree in 50% of the races



Deep Variational Bayes Filter with DMP

Nutan Maximilian
Chen Karl
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transition model:
Tit_|_1 — Oé(ﬁZ(Zgoal — Zt) — Zt) ft €




unsupervised

Deep Variational Bayes Filtering:
DMPs in latent space of a variational autoencoder
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latent space z(t) is not straight!

unsupervised

latent space sampling #2: this is the optimal "shortest" path
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Chen & Klushyn & Kurle & Bayer & van der Smagt, 2018




how does Geodesics work?
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...on a 6-DoF robot arm...
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Active Learning based on Data
Uncertainty and Model Sensitivity

Nutan Chen, Alexej Klushyn, Alexandros Paraschos, Djalel Benbouzid, Patrick van der Smagt

Al research, Data:Lab, Volkswagen Group



Deep Variational Bayes Filter with a map

RGMAX.al
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Graphical model assumes global Map

iil) Observations are extracted from map
through attention model based on current

location,

Iv) Latent state is identified with location.

Justin Atanas
Bayer Mirchev

Baris
Kayalibay



End-to-End SLAM ARGMAX.al

Our approach is data-driven: deep neural networks, attention models and variational inference.

agent inverse pose sensor attention model &
traversing map model & odometry fusion grid-based map



optimal control of a learnt model

mapping, localisation and
planning —all in the same model.

Navigation via optimal control:
The cost at the goal is O and -1
everywhere else.

Optimisation is performed in a
learned model and executed only
after planning has finished.




exploration—maximise expected surprise

The Bayesian nature of the model

allows a principled quantification
of uncertainty.

We can estimate how good the
model knows certain regions of its
environment.

Optimal control drives the agent into
unexplored regions.




Rlyubln et aI 2005: o power,
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- can it be efﬂmently computed? | s

Karl & Solch & Ehmck & Benbou2|d & van der Smagt & Béyer Unsuperwsed F?eal-T/me Control through Varlat/onal Empowerment, arXiv 2017
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how is efficient empowerment computed?!

& ol
Maximilian Maximilian Philip Djalel Justin
Karl Sélch Becker Benbouzid Bayer

empowerment is the channel capacity between action u; and the following state Z;41
E(z) = max Z(z',u | z)

\, looking for the best state where each
e KL(p(z', u | z) || p(z’| z) w(u | z)) action has a meaningful consequence

/
://p(z',u|z)ln p(z,u | 2) dz’'du

p(z'| z)w(u | z)
Intractable
(computed for all actions)

approximate with lower (u| 7, z)
bound Z(z’,u|z) > //p(z',u | z) In 2 ——~ dz'du =
w(u | z)

Angular velocity [rad/s]
o

T 7T =Epp(zia) [ KL(p(u | Z,2) ||
plan

Karl & ... & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv, 2017 Anal 0[ d)
ngle [ra



empowerment on a pendulum
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iIndependent balls with 40-dimensional lidar sensors
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empowered policy
random action

(b) Policy averaged over
all balls.
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Karl & ... & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv, 2017
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control through DVBF:
exploration
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unsupervised

control through DVBF:
after unsupervised learning with Empowerment
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Karl & ... & van der Smagt & Bayer: Unsupervised Real-Time Control through Variational Empowerment, arXiv, 2017






actions in lidar space

empowerment
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