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100 billion neurons
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10 000 connections per neuron
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10 million times
slower than a transistor
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In Immune system

 Innate immunity (ancient, fast)

 adaptive immunity (in vertebrates, slower, memory)




Experiments on Frogs
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Supplementary
motor area

Somatosensory
cortex

Posterior
.~ parietal cortex

To brainstem
and spinal cord

Globus pallidus:
Internal External

Thalamus

FIGURE 14.1 STRUCTURES AND CONNECTIONS MEDIATING CONSCIOUS AND
UNCONSCIOUS PROCESSES.

Edelman and Tononi, 2000



In genetics

* 98% of human genome does not encode protein sequences

» Used in part for regulation and control
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Prediction

Catching, avoiding obstacles
Waking up

Pavlov

Placebo effect

Wagner operas

I1lusions









Synchronization




Synchronization models neural computations at many scales

e Coincidence detection, pattern matching
e Mirror neuron response

e Signal transmission and restoration

e Temporal binding of multi-sensory data

e Attention and priming
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Nonlinear Contraction

Lohmiller and Slotine, Automatica 34(6), 1998

x = f(x,t)

Contraction: Any two solutions converge exponentially



Nonlinear Contraction
Lohmiller and Slotine, Automatica 34(6), 1998
x = f(x,t)

Contraction: Any two solutions converge exponentially
if Jacobian is negative definite in some metric



Contraction Theory

Lohmiller and Slotine, Automatica 34(6), 1998

x = f(x, 1)
If 3 O(x,t)such that, uniformly/x, V¢t > 0,
: f
F=(0+ @6_>@_1 <0 O(x,1)"O(x,t) >0

0x
then any two trajectories converge exponentially.

N

/m
Proof: Consider virtual displacementéx = % dx,
1 d

0z = Odx 10z]> < Ar ||0z]|?

2 dt
and path integrationat fixed time.



Observer

Lorenz attractor Observer
C{j:(j(y_aj) {ﬁsz—g—xé
Yy=pr—y—xr=z A 5 .
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Aggregation Properties

e positive parallel

e negative feedback

e series and cascades

e translation and scaling

e all of the above



Aggregation Properties

e positive parallel

e negative feedback

e series and cascades

e translation and scaling

e all of the above

Plausibly favored by evolution.
Similarly, development.




Combinations of Contracting Systems

d d
Parallel % 0z = z@: Oéz(t) % 5Zi

with «;(t) > 0, Same metric

. . d 5Z1 . F1 0 5Z1
Hierarchies 7 ( 522) — (G2 F2> (5z2)

with G» bounded

d (5Z1 o F1 G1 5Z1
Feedback T ( 6z2> = <G2 F, 529

. 1
with A\(Fp) A\(F2) > 1 rknig 0% (kG + GI)  uniformly
>



Hierarchies

Composite Variables

$ = ¢(s,t) contracting by choice of control law

T4\ =s contracting by definition o

Qualitative dynamicskor instance, react faster to larger errors

: 01
F (4 Ao )F = 5 7= = —(ut2nla))
More generally v = f(x,z,..., 2"V u,t)

Target contracting system z" = g(z,x,..., 2"V 1)

Choosing
s = gD _ g
d
Emﬁ”_l) = — ks -+ g
yields
2 _ g=5+ks Zuo and Slotine, 2004



Parallel Combinations

Control Primitives

Dynamicsf and primitivesp, all contracting in the sam@®(x)

x = f(x,t) + Z ai(t) ¢i(x, 1) a;(t) >0

More generally
x =f(x,t) + B(x,t)u

Assume control primitivest = p;(x, t) make theclosed-loop
systemcontractingin common metric,¥:. Then anyconvex
combination

u= Z o;(t) pi(x,t)  ou(t) >0 Z O‘i@)l\/u:T 3152

yields a contracting dynamics in the same metric.



Entrainment

Contracting systems of the form
% = £(x, u(t))

where the input u(t) is periodic in time, converge towards a
periodic state of the same period.

Robustness

Disturbed flow field
x = f(x,t) + d(x,1)
Radius of metric ball

R+ AR < |©d|
Lohmiller and Slotine, 1998



Alternate Norms

d F+F'
ozl = 3202 = Zl6all < A (=) N2l

1

Other norms give diagonal dominance conditions

d
lozlls = > 1ozl = —llozlh < max(Fy+)  |Fyl) [loz])s

i i#]

d
162]lc = max[0z]  —  —[6z]l < max(Fut+)  [F]) (02w
7 dt ? .
J#i
Lohmiller and Slotine, 1998



Hierarchies of strongly connected components
Tabareau and Slotine, 2005




Facilitated Variation
Gerhart and Kirschner, P.N.A.S. 104, 2007

Three billion years ago, in early prokaryotic organisms

Components of energy metabolism, biosynthesis of the 60 building
blocks, DNA replication, DNA transcription to RNA, translation of RNA to
protein, lipid membrane synthesis, transmembrane transport

Two billion years ago, in early eukaryotic cells

Components of the formation of microfilament and microtubule
cytoskeletons, motor proteins moving materials along the cytoskeletons,
contractility processes, movement of the cell by cilia and ruffling
membrane action, shuttling of materials between intracellular
organelles, phagocytosis, secretion, chromosome dynamics, a complex
cell cycle driven by protein kinases and protein degradation, sexual
reproduction with meiosis and cell fusion

One billion years ago, in early multicellular animal life forms
Components of 15—20 cell—cell signaling pathways, cell adhesion
processes, apical basal polarization of cells, junction formation,
epithelium formation, specialization of cells toward physiological ends,
some developmental processes of the single-celled egg to the adult

Near pre-Cambrian, in animals with early body axes

Components of complex developmental patterning, such as
anteroposterior axis formation (Wnt/Wnt antagonist gradients) and
dorsoventral axis formation (Bmp/antagonist gradients), inductions,
complex cell competence, additional specialized cell types, formation of
the body plan’s map of selector gene compartments (both transcription
factors and signaling proteins), various regulatory processes
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The universe of 3-node interconnection patterns

NETWORK MOTIFS

Gene Transcription
(Yeast and E. Coli)

Neural network
(C. Elegans)

Food webs
(Little Rock, Ythan...)

[Milo et.al. Science 2002]



Overrepresented subgraphs have low
relative contraction loss
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Time delays

Two contracting systems of possibly different dimensions,
with identity metric,

{Xl = f1(xy, 1)

Xo = fQ(X27 t)

Delayed coupling with constant G; and constants k; > 0

Xl = f1<X1, t) + k’lG2<G{X2<t — T21) — GgXl(t»
XQ = fQ(Xg, t) + kQGl(ngl(t — T12) — G{Xg(t))

preserves asymptotic contraction.

For same dimension and (; = (5, means couplings are p.s.d.
in same metric.

Wang and Slotine, MIT NSL 2004, IEEE TAC 2006



e Teleoperation between two linear mass-spring dampers

F1 + biy + Wiz = kp(aa(t —To1) — 21(t)) + kp(xa(t — Ta1) — x1(1))
To + bio + w2m2 = k‘D(:tl(t — T12) — i’g(t)) + k:p(l‘l(t - T12) — xz(t))

. w 0 - /{DO
o[r1] - we[te]

w

PD Control D Control

150 8
Illl' Illl'
A R |

100

50 ﬂﬂ

e Similarly, in Turing/Smale diffusion-driven instability, the
diffusion gains lose positive semi-definiteness once expressed
in the individual cell metric.
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Toward Contraction Analysis of Optimization
With metric M = ® ' © the condition
(@ + @A) ® ' < —al
is equivalent to

M+ATM+MA < —20M

Recall that M + AT M + M A < —2aM implies that geodesic
distances decrease exponentially,

du(x1(t),%2(t)) < e da(x1(0),%2(0))



Contraction analysis of gradient flows

Fact: If a function f € C*(R",R) is a-strongly convex, then its gradient system
X = —0Oxf

converges to the global minimum exponentially with rate «.

Proof: Consider the identity metric M(x) = L.

MA +ATM+M = 20, f < —2al



Generalization to the Riemannian Setting

e The natural gradient (Amari, 1998) gives the direction of steepest ascent
according to distances measured on a space or manifold equipped with a
Riemannian metric.

e Natural gradient descent: x = —M(x) 10, f

e A function f € C*(R",R) is a-strongly g-conver, if it is a-strongly convex
in the length parameter along any geodesic curve.

— Equivalently, its geodesic Hessian H(x) must satisfy H(x) > oM (x).

/ (’7’(5)) Geodesic Hessian
Hi; =0 f — Fr]fj O f

M [Rapscak, 1991]



Contraction Analysis of Natural Gradient Flows

Theorem: A function f : R® — R is a-strongly g-convex in a metric M(x)
if and only if its natural gradient system is contracting at rate « in the same
metric.

Basic Insight: The geodesic Hessian H(x) is given by
1 .
H(x) = -5 (MA +A'M + M)

where A(x) is the Jacobian of the natural gradient dynamics.

[Wensing and Slotine, 2018]



Non-Strict Contraction Case

Consider the case with the natural gradient dynamics semi-contracting:

% [6x ' Mox| = —20x 'H(x)dx < 0

Under mild assumptions, along trajectories H(x(t))dx(t) — 0

Theorem: If the natural gradient dynamics of f are semi-contracting
in a metric M(x), then f is g-convex, every stationary point of f is

a global optimum, and any geodesic between optima is composed of
optima.

Sketch: Consider the family of solutions ~(s,t) with initial conditions «(0,0) = x1,
v(1,0) = x2 with x; and x2 stationary points.

1. H(~(s,t))0sv(s,t) = 0 as t — oo.

2. Oxf(v(s,t)) > 0ast— oo

3. f(x2) = f(x1)

[Wensing and Slotine, 2018]



—Xamples:

Sregman

Recall the Bregman divergence of a convex function f:

ds(plla) = f(p) — flq)— <

axf(cl)ap_q >

The Bregman divergence is convex in p but not necessarily in q.

Example: Generalized KL-divergence x € R",
f(x) =2 ailog(x).
dy(plla) = L pilog () +ai — pi

e Metric via: ds? = (593?)

L

e Natural gradient for fixed p, q=p —q.

e Differential dynamics %5q = —Jq, = contracting

e The discrete KL-divergence is g-convex in q.

Divergence

f(x) P

ds(p||a)

Example: For PD matrices
f(X) = —logdet(X)

d¢(P||Q) the KL-divergence between A(0,P) and N (0, Q).

o Metric via: ds® = tr((X 1 6X)?)

e Natural gradient for fixed P, Q = —(Q — P)

e Differential dynamics: %(5Q = —0Q = contracting.

e Thus, ds(P||Q) is g-convex in Q.

[Wensing and Slotine, 2018]



—xtension to Time-Varying Contexts

Theorem: A function f(x,t) is a-strongly g-convex in a metric M(x) for each
t if and only if its natural gradient system is contracting at rate o in the same
metric.

Basic Insight: The geodesic Hessian at fixed time H(x,t) is given by

H(x, t) = —% (M)A (x, 1) + A(x. 1) TM(x) + M(x. 1))

where A(x,?) is the Jacobian of the natural gradient dynamics at time t¢.



Combination Properties

Hierarchical Natural Gradient Multi-player games
- —1
{ X1 =—Mi(x1)" Ox, f1(x1) | Lfil = —M(x1) 7 O, f1(x1,%2) |
X1 A X1
X2
- —1
[X2 = _M2(X2) 8X2f2(X17X2)J 4[)(2 — —M2(X2)_1 6x2f2(X17X2)J
Contracting when: Contracting to a unique Nash when:
e f1 strongly g-convex e f1 strongly g-convex for each xo
e f5 strongly g-convex for each x; e f5 strongly g-convex for each x4
o aX1X2fl = —k (8X2X1f2)—|—

[Wensing and Slotine, 2018]



—xtension to the Primal Dual Setting

Consider the Lagrangian L£(x, A,t) with metric My and My. The
associated geodesic primal-dual dynamics

My (x) x = —0xL
Mi(A) A = 0L

are contracting if £ g-convex over x (in My ) and g-concave over A
(in M)\)

Contraction in metric M = diag(Mx, My ):
M'A+ A™ + M = -2 [

Potential applications:
e Min-max problems in adversarial training

e Distributed constrained g-convex optimization

[Wensing and Slotine, 2018, Nguyen et al. 2018]



Partial Contraction

Wang and Slotine, 2002

Two nonlinear systems synchronize if their trajectories are
both particular solutions of a virtual contracting system.



Non-Autonomous Setting: Virtual Systems

Example: Time-varying learning rates in natural gradient descent

x = —p(x,t) M(x) " 0xf(x)

If p(x,t) > Pmin, and f is a-strongly g-convex in M(x), then the above con-
verges exponentially to the minimum of f with rate ap,,in.

Virtual System:
y = —p(x,t) M~ (y) Oy f(y)

[Wensing and Slotine, 2018]



Quorum sensing

All-to-all coupling

J
equivalent to + quorum sensing
J

Use virtual system

y = f(y,1) —k:Ny+kZXj

J

contracting for upper-bounded Jacobian and k£ /N large enough.

Note N2 — 2N connections.



Some non-intuitive properties

e Global from local

e Leader following

Global synchronization to single, locally-connected element.

e Fast inhibition

A single inhibitory link can turn off an entire network.

e Robustness

Spike synchrony preserved under large parameter variations.

e Adaptation leader

A single element can control entire qualitative behavior.
e Long range synchronization through different dynamics

e Synchronization protects from noise
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Fast Inhibition
Xi:f(xi,t)—FZKﬁ(Xj—xi) i=1,...,n

A single inhibitory linkbetween two arbitrary elements has

the ability to turn off the entire network.

x, = f Xa,t—f—ZKja : o) + K (=%, — x,)
JEN,

X, = f(xpt) + Y Ky (x—xp) + K (—x, — x)
JEN



Fast Inhibition

L L L L L
50 100 150 200 250 300



x = -grad V(x)



Polyrhythms
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Concurrent Synchronization

Pham and Slotine, 2005

Under simple conditions on the coupling strengths, Ehgroup globally
exponentially synchronizes, thus providing synchronized inputs to the outer
elements. So does tFegroup.

Regardless of the dynamics, connections, or inputs of the other systems.

"As stable" agylobal exponential convergencedn equilibrium. But now to
a possibly verycomplex coordinated behavior

The invariance itself (but not the convergence) is closely related to the
notion of input-equivalenc€Golubitsky, et al.).

Evolution/Development friendly.
























Global exponential concurrent synchronization

Contraction to a flow-invariant linear subspace
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Global exponential concurrent synchronization

Contraction to a flow-invariant linear subspace

a given frajectory

in the orthogonal

shrinking length
subspace

the corresponding trajectory
in the invariant subspace




Global exponential concurrent synchronization

Contraction to a flow-invariant linear subspace

e Simple conditions based on Jacobians

e Combination properties



Contraction to a Linear Subspace

Theorem Consider a linear subspadéd invariant for
x = f(x,1)

Let V be the orthornormabrojection onM*. All solutions
converge exponentially td1 if dynamics

y =VE(V'y,t)
IS contracting (in a constant metric).
Note
xeM << Vx=0

Synchronization rate = Contraction rate of



shrinking length in the a given trajectory
orthogonal subspace /
(dimension n-p) —_— l

/\/ corresponding trajectory

in the invariant subspace
(dimension p)




JF

shrinking length in the a given trajectory
orthogonal subspace /
(dimension n-p) T I

20

/\/ invariant
boundary layer

(dimension p)










Two way coupling (k1 = ko = k)
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Generalizedliffusive connections

Xl = f1<X1, t) + kAT(BXQ - AXl)
XQ = fQ(Xg, t) + kBT(Axl — BXQ)

wherex; andx, can be of different dimensions, addandB
are constant matrices of appropriate dimensions.

of
P A'A —-A'B
J = ( ox1 o8, )—kL, where L = ( "B'A BB )

8x2
L = LY > 0 since (X1 X9 ) L <X1) = ||AX1—BX2H2
X9

Assume that the subspadel : Ax;, — Bx, = 0 is flow-
invariant. Using the projectioV on M=+ (soVLV' > 0),
for upper bounded individual Jacobians, large enokgin-
sures exponential convergencehd.

By recursion for larger systems.



How Synchronization Protects from Noise

Tabareau, et al.,, PLoS Comp. Bio., January 2010



Consider the synchronized systems

di:

f(z; —|—]€Z — T ] dt + o;(x;)dW;
JFi

The average, M = % > x; , satisfies

AN — % [Z Fla)dt + Z ai(:r:i)dl/l/i]

This can be written

M = (f(M) +s>dt+ Zaz z;)d

with

0*f
BNl < o (55) HEN)

where p denotes spectral radius and

k(kN) — 0 as kN — 400
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Multiple Time Scales

N layers, each partially contracting in state z;, at rate (3,

Zp = fk(zk,fla Rk Rk+15 t)

and the reduced system approximation

Zy = fk:(zkf—la 2k ZZ+1(Z/€7 t)? t>

Theorem 1 Assume that f. is n.- and &;,-Lipschitz with respect
to 2z and 2y, 1 , and that each z;(2),_1,t) is py-Lipschitz. Let
Ye = 1 — NpTiy1Prr1. For small enough constants,

Vi >0 VelBr > &

the reduced system is contracting and its deviation from the
exact system can be explicitly bounded.

Can also apply to virtual contracting systems, e.g. to sync of

multi-time scale oscillators or quorum sensing.
(Nguyen et al., 2018)



Transverse Contraction

If the contraction condition holds on a
compact manifold:

O (M(x) + J(x) M(x) + M(x)J(x) + AM(x))0 <0

For all § satisfying 'M(x)f(z) =0
i.e. transversal w.r.t. M (z)

Then there exists a unique, globally orbitally
stable limit cycle.

Manchester & Slotine, 2012



® Robust regions of stability for walking robots
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Some Other Applications
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o (Left) A network of 128 silicon Integrate-and-Fire neurons in a Cooperative and
Competitive Network (CCN) topology (mediated respectively by 124 locally
coupled excitatory neurons and 4 all-to-all coupled inhibitory neurons)

(Right)The input and output from the network are events (also called spikes or
action potentials). They can be mapped from one chip to another.
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(G. Indiveri, E. Chicca, R. Douglas 2007)



Miller, et al., 2006

Triantafyllon, et al., 2005 Chung, et al., 2008; Ramirez, et al., 2009

Seo, et al., 2007




System Architecture for Real-Time Animation

» Movement primitives are
extracted from MOCAP data by
unsupervised learning.

(Omlor & Giese, 2006)

» Primitives modelled by
dynamical systems.

» The phase space mapped onto
the 'source signals' using
Support Vector Regression. (Giese

et al., 2008)

» Joint angles reconstructed by
combining the (time-shifted)
source signals linearly according
to a learned mixture model.

Limit cycle attractor

Periodic signals

| — SVR
(1)

—>{ SVR

0

oft-1,

Mixing model

time

Joint angles
Kinematic model <—| () =m,+ Zw” o(t-1,)
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Movement Primitives and Sparse
Synchronization for Gaited Locomotion
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MIT Cheetah
[Park, Wensing, Kim, RSS, 2015]

[Wensing and Slotine, 2016]



Decentralized Cloud-Based Teaming With
Delay

Cloud-Based Update Law for Teaming
T A

[Wensing & Slotine, ICRA 2018]
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BACKGROUND

EKF-SLAM

e Take Measurements
_n_ e 2 2
y1 =6 = arctan(x—) Yo =T = 1/ 23 + 22 x.«A
2 - X= (rsinf,rcosf
Lanagmark

)T
e Standard extended Kalman Filter
x =u+ K(y — HX)
P=Q-PHTR 'HP

e Linearize measurements with estimated
Jacobian H; (%)
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LOCAL LTV KALMAN FILTER SLAM

¢ The fictive measurement vectors
h = (cosf., —sinb _.,A
( ’ ) X2 X= (rsinf,rcosf
h* = (Sin9> 0039) Lanamark

)T

* |n azimuth model
x = (x1,22)" = (rsinf,rcos )’

e Rewrite the measurements into linear virtual
constrains

0 = arctan(ﬂ) < hx=0

%)

r=4/224+22 & h™'x=r




EXTENSION TO PINHOLE CAMERA MODEL

e The pinhole camera model

yi| _ _i L1
Y2 r3 | T2
e which can be rewritten as LTV constraints on
the states (xq,x9,x3) as

X1
f O Y1 o :HXZO
0 f

xs3

e LTV Kalman Filter




EXTENSION TO STRUCTURE FROM MOTION

Structure from Motion

e Remember that for the pinhole camera

model
X1
0
f Y1 I = HX — O
0 f w
I3
Pj o
e Rewrite in global coordinates . Pjleas
’d P F’
f O yz]_ camera image k — 1 ‘
T X: — X — O g camera image k + 1
[O f y22 (/8>( Z C) camera il!l

e LTV Kalman Filter




DECOUPLED UNLINEARIZED NETWORKED KALMAN-FILTER

Complete Algorithm for SLAM-DUNK

e Separate LTV Kalman filter for each single pair of
landmark and virtual vehicle, including both the
measurement and the consensus following for the
virtual vehicle

| Iy'T(B)
X; 10 =l X
[ );(m; ] — [ u ] +P’LH’L’UR (Yz Hw [ )A(m' ])

Pz‘ =Q — Pngf;R_lHivPi

e The consensus Xuyc is the best estimation from the
weighted average that maximizes the likelihood

= (Z E;il)_l Z(Z;ilxvi)
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Virtual
vehicles



ynamic soaring beyond biomimetics:
ign and control of an albatross-inspired |
~wind-powered system
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LARGE-SCALE MOVEMENT
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Fast and fuel efficient? Optimal use of wind by flying
albatrosses
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1l lift

drag

AW cos W

U =r7/2
V=0ormw
U =—7/2

upwind
crosswind

downwind




Controlled Instabilities

e Fast maneuvering
e Path of least resistance
e Constraint satisfaction

e Expansion and pruning



Graph Coloring Sudoku

=

N

red = Constraint black = Solution

64 Nodes, 4 states each, 400 constraints 81 Nodes, 9 states each, ~10,000 constraints

Rutishauser, Slotine, Douglas 2014
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The mathematics of network C(”)ntrol — from
cell biology to cellphones# pages 158 &167
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Controllability of Complex Networks




Controllability of Complex Networks

Which nodes should one drive in order to control the entire system?



February 12,2013 | vol. 110 | no.7 | pp. 2425-2678 .
WWW.pnas.org

Proceedings of the National Academy of Sciences of the United States of America

Observing complex systems
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Facilitated Variation
Gerhart and Kirschner, P.N.A.S. 104, 2007

Three billion years ago, in early prokaryotic organisms

Components of energy metabolism, biosynthesis of the 60 building
blocks, DNA replication, DNA transcription to RNA, translation of RNA to
protein, lipid membrane synthesis, transmembrane transport

Two billion years ago, in early eukaryotic cells

Components of the formation of microfilament and microtubule
cytoskeletons, motor proteins moving materials along the cytoskeletons,
contractility processes, movement of the cell by cilia and ruffling
membrane action, shuttling of materials between intracellular
organelles, phagocytosis, secretion, chromosome dynamics, a complex
cell cycle driven by protein kinases and protein degradation, sexual
reproduction with meiosis and cell fusion

One billion years ago, in early multicellular animal life forms
Components of 15—20 cell—cell signaling pathways, cell adhesion
processes, apical basal polarization of cells, junction formation,
epithelium formation, specialization of cells toward physiological ends,
some developmental processes of the single-celled egg to the adult

Near pre-Cambrian, in animals with early body axes

Components of complex developmental patterning, such as
anteroposterior axis formation (Wnt/Wnt antagonist gradients) and
dorsoventral axis formation (Bmp/antagonist gradients), inductions,
complex cell competence, additional specialized cell types, formation of
the body plan’s map of selector gene compartments (both transcription
factors and signaling proteins), various regulatory processes



Link Control

Nepusz and Vicsek, Controlling edge dynamics in complex networks
Nature Physics, 8(7), 2012

Dual problem and properties, simple algorithm.

Slotine and Liu, Complex networks: The Missing Link
Nature Physics, 8(7), 2012

Evolution may be based on ancient optimized components
whose connections are the main target of natural selection (fa-
cilitated variation). From this perspective, controllability of
evolution and development is primarily a link-based concept.



http://mit.edu/nsl
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