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A Brief History of Adaptive Control
◮ Adaptive Cpmtrol: Learn enough about a process and its

environment for control – restricted domain, prior info
◮ Development similar to neural networks

◮ Many ups and downs
◮ Lots of strong egos

◮ Early work driven adaptive flight control 1950-1970.
◮ The brave era: Develop an idea, hack a system and fly it!
◮ Several adaptive schemes emerged no analysi
◮ Disasters in flight tests - the X-15 crash nov 15 1967
◮ Gregory P. C. ed, Proc. Self Adaptive Flight Control

Systems. Wright Patterson Airforce Base, 1959
◮ Emergence of adaptive theory 1970-1980

◮ Model reference adaptive control emerged from flight
control stability theory

◮ The self tuning regulator emerged from process control and
stochastic control theory

◮ Microprocessor based products 1980
◮ Robust adaptive control 1990
◮ L1-adaptive control - Flight control 2006
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The Self-Oscillating Adaptive System
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◮ Oscillation at high frequency governed by relay and filter
◮ Automatically adjusts to gain margin gm = 2!
◮ Dual input describing functions



SOAS Simulation 1
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Gain increases by a factor of 5 at time t = 25



SOAS Simulation 2
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Gain increases by a factor of 5 at time t = 25



The X-15 Crash Nov 11 1967



Adaptive Control - A Perspective

1. Introduction
2. Model Reference Adaptive Control

◮ The MIT rule -sensitivity derivatives
◮ Direct MARS - update parameters of a process model
◮ Indirect MRAS - update controller parameters directly
◮ L1 adaptive control - avoid dividing with estimates
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4. Dual Control

5. Summary



MRAS - The MIT Rule

Process
dy

dt
= −ay + bu

Model
dym

dt
= −amym + bmuc

Controller
u(t) = θ1uc(t)− θ2y(t)

Ideal controller parameters

θ1 = θ 0
1 =

bm

b

θ2 = θ 0
2 =

am − a

b

Find a feedback that changes the controller parameters so that
the closed loop response is equal to the desired model



MRAS - The MIT Rule
The error

e = y − ym, y =
bθ1

p + a + bθ2
uc p =

dx

dt

�e

�θ1
=

b

p + a + bθ2
uc

�e

�θ2
= − b2θ1

(p + a + bθ2)2 uc = − b

p + a + bθ2
y

Approximate
p + a + bθ2 ( p + am

The MIT rule: Minimize e2(t)

dθ1

dt
= −γ

(

am

p + am
uc

)

e,
dθ2

dt
= γ

(

am

p + am
y

)

e



Simulation a = 1,b = 0.5,am = bm = 2.
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Adaptation Laws from Lyapunov Theory

Replace ad hoc with desings that give guaranteed stability

◮ Lyapunov function V (x) > 0 positive definite

dx

dt
= f (x),

dV

dt
=

dV

dx

dx

dt
=

DV

dx
f (x) < 0

◮ Determine a controller structure
◮ Derive the Error Equation
◮ Find a Lyapunov function

◮

dV

dt
≤ 0 Barbalat’s lemma

◮ Determine an adaptation law



First Order System
Process model and desired behavior

dy

dt
= −ay + bu,

dym

dt
= −amym + bmuc

Controller and error

u = θ1uc − θ2y , e = y − ym

Ideal parameters

θ1 =
b

bm
, θ2 =

am − a

b

The derivative of the error

de

dt
= −ame − (bθ2 + a− am)y + (bθ1 − bm) uc

Candidate for Lyapunov function

V (e,θ1,θ2) =
1
2

(

e2 +
1

bγ
(bθ2 + a− am)

2 +
1

bγ
(bθ1 − bm)

2
)



Derivative of Lyapunov Function

V (e,θ1,θ2) =
1
2

(

e2 +
1

bγ
(bθ2 + a− am)

2 +
1

bγ
(bθ1 − bm)

2
)

Derivative of error and Lyapunov function

de

dt
= −ame − (bθ2 + a− am)y + (bθ1 − bm) uc

dV

dt
= e

de

dt
+

1
γ
(bθ2 + a− am)

dθ2

dt
+

1
γ
(bθ1 − bm)

dθ1

dt

= −ame2 +
1
γ
(bθ2 + a− am)

(

dθ2

dt
− γ ye

)

+
1
γ
(bθ1 − bm)

(

dθ1

dt
+ γ uce

)

Adaptation law

dθ1

dt
= −γ uce,

dθ2

dt
= γ ye [ de

dt
= −e2

Error will always go to zero, what about parameters, Barbara’s
lemma!



Indirect MRAS - Estimate Process Model
Process and estimator

dx

dt
= ax + bu,

dx̂

dt
= âx̂ + b̂u

Nominal controller gains:
kx = k0

x = (a− am)/b, kr = k0
r = bm/b.

Estimation error e = x̂ − x has the derivative

de

dt
= âx+b̂u−ax−bu = ae+(â−a)x̂+(b̂−b)u = ae+ãx̂+b̃u,

where ã = â− a and b̃ = b̂ − a. Lyapunov function

2V = e2 +
1
γ

(

ã2 + b̃2
)

.

Its derivative becomes

dV

dt
= e

de

dt
+

1
γ

(

ã
dâ

dt
+b̃

db̂

dt

)

= ae2+
(

ex̂+
1
γ

dã

dt

)

ã+
(

eu+
1
γ

db̃

dt

)

b̃



L1 Adaptive Control - Hovkimian and Cao 2006

Replace

u = − â− am

b̂
x +

bm

b̂
r

b̂u + (â− am)x − bmr = 0

with the differential equation

du

dt
= K

(

bmr − (â− am)x − b̂u
)

Avoid division by b̂, can loosely speaking be interpreted as
sending the signal b̂mr + (am − â)x through a filter with the
transfer function

G(s) =
K

s + K b̂



Adaptive Control - A Perspective
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◮ Process control - regulation
◮ Minimum variance control
◮ The self-tuning regulator

4. Dual Control

5. Summary



Steady State Regulation



Modeling from Data (Identification)
◮ Experiments in normal

production
◮ To perturb or not to perturb
◮ Open or closed loop?
◮ Maximum Likelihood

Method
◮ Model validation
◮ 20 min for two-pass

compilation of Fortran
program!

◮ Control design
◮ Skills and experiences

KJÅ and T. Bohlin, Numerical Identification of Linear Dynamic Systems from
Normal Operating Records. In Hammond, Theory of Self-Adaptive Control

Systems, Plenum Press, January 1966.



Minimum Variance Control
Process model

yt + a1yt−1 + ... = b1ut−k + ...+ et + c1et−1 + ...

Ayt = But−k + Cet

◮ Ordinary differential equation
with time delay

◮ Disturbances are statinary
stochastic process with rational
spectra

◮ The predition horizon: tru delay
and one samling period

◮ Control law Ru = −Sy

◮ Output becomes a moving
averate of white noise yt+k = Fet

◮ Robustness and tuning

The output is a mov-
ing average yt+j =
Fet , which is easy to
validate!



Experiments

KJÅ Computer Control of a Paper Machine : An Application of Linear
Stochastic Control Theory. IBM J of Research and Development, 11:4, pp.

389–405, 1967.
Can we find an adaptive regulator that regulates as well?



The Self-Tuning Regulator STR
Process model, estimation model and control law

yt + a1yt−1 + ⋅ ⋅ ⋅ + anyt−n = b0ut−k + ⋅ ⋅ ⋅ obmut−n

+ et + c1et−1 + ⋅ ⋅ ⋅ + cnet−n

yt+k = s0yt + s1yt−1 + ⋅ ⋅ ⋅ + smyt−m + r0(ut + r1ut−1 + ⋅ ⋅ ⋅ rnut−{)

ut + r̂1ut−1 + ⋅ ⋅ ⋅ r̂nut−{ = −(ŝ0yt + ŝ1yt−1 + ⋅ ⋅ ⋅ + ŝmyt−m)/r0

If estimate converge and 0.5 < r0/b0 < ∞
ry (τ ) = 0,τ = k ,k + 1, ⋅ ⋅ ⋅ k + m + 1

ryu(τ ) = 0,τ = k ,k + 1, ⋅ ⋅ ⋅ k + {
If degrees sufficiently large ry (τ ) = 0,∀τ ≥ k

◮ The self-tuning regulator (STR) automates identification
and minimum variance control in about 35 lines of code.

◮ Easy to check if minimum variance control is achieved!
◮ A controller that drives covariances to zero

KJÅ and B. Wittenmark On Self-Tuning Regulators, Automatica 9

(1973),185-199



Convergence Analysis
Process model Ay = Bu + Ce

yt + a1yt−1 + ⋅ ⋅ ⋅ + anyt−n = b0ut−k + ⋅ ⋅ ⋅ bmut−n

+ et + c1et−1 + ⋅ ⋅ ⋅ + cnet−n

Estimation model

yt+k = s0yt + s1yt−1 + ⋅ ⋅ ⋅ + smyt−m + r0(ut + r1ut−1 + ⋅ ⋅ ⋅ rnut−{)

Theorem: Assume that
◮ Time delay k of the sampled systemis known
◮ Upper bounds of the degrees of A,B and C are known
◮ Polynomial B has all its zeros inside the unit disc
◮ Sign of b0 is known

The the sequences ut and yt are bounded and the parameters
converge to the minimum variance controller

G. C. Goodwin, P. J. Ramage, P. E. Caines, Discrete-time multivariable
adaptive control. IEEE AC-25 1980, 449–456



Convergence Analysis
Markov processes and differential equations

dx = f (x)dt + g(x)dw ,
�p

�t
= −�p

�x

(�fp

�ix

)

+
1
2
�2

�x2 g2f = 0

θ t+1 = θ t + γ tϕe,
dθ

dτ
= f (θ ) = Eϕe

Method for convergence of recursive algorithms. Global
stability of STR (Ay = Bu + Ce) if G(z) = 1/C(z)− 0.5 is SPR

L. Ljung, Analysis of Recursive Stochastic Algorithms IEEE Trans AC-22

(1967) 551–575.

Converges locally if ℜC(zk ) > 0 for all zk such that B(zk ) = 0

Jan Holst, Local Convergence of Some Recursive Stochastic Algorithms. 5th
IFAC Symposium on Identification and System Parameter Estimation, 1979

General convergence conditions

Lei Gui and Han-Fu Chen, The Åström-Wittenmbark Self-tuning Regulator
Revisited and ELS-Based Adaptive Trackers. IEEE Trans AC36:7 802–812.



Paper Machine Control

U. Borisson and B. Wittenmark An Industrial Application of a Self-Tuning
Regulator, 4th IFAC/IFIP Symposium on Digital Computer Applications to

Process Control 1974



Steermaster

◮ Ship dynamics
◮ SSPA Kockums
◮ Full scale tests on

ships in operation



Ship Steering - Performance

STR Conventional

C. Källström, KJÅ, N. E. Thorell, J. Eriksson, L. Sten, Adaptive Autopilots for
Tankers, Automatica, 15 1979, 241-254



Control of Orecrusher 1973

Forget Physics! - Hope an STR can work!
Power increased from 170 kW to 200 kW

U. Borisson, and R. Syding, Self-Tuning Control of an Ore Crusher,
Automatica 1976, 12:1, 1–7



Control of Orecrusher 1973
Distance Lund-Kiruna 1400 km, home made modem,
supervision over phone, sampling period 20s.
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Dual Control

A. A. Feldbaum
Control should be probing as well as directing

Dual control theory I A. A. Feldbaum Avtomat. i Telemekh.,
1960, 21:9, 1240–1249

Dual control theory II A. A. Feldbaum Avtomat. i
Telemekh., 1960, 21:11, 1453–1464

R. E. Bellman Dynamic Programming Academic Press
1957

Stochastic control theory - Adaptive control

Decisionmaking under uncertainty - Economics

Optimization Hamilton Jacobi Bellman

Curse of dimensionality - Bellman



The Problem
Consider the system

yt+1 = yt + but + et+1

where et is a sequence of independent normal (0,σ 2) random
variables and b a constant but unknown parameter with a
normal b̂,P(0) prior or a random wai.
Find a control llaw such that ut based on the information
available at time t

X t = yt ,yt−1, . . . ,y0,ut−1,ut−2, . . . ,u0,

that minimizes the cost function

V = E

T
∑

k=1

y2(k).

KJÅ and A. Helmersson. Dual Control of an Integrator with Unkown Gain,
Computers and Mathematics with Applications 12:6A, pp 653–662, 1986.



The Hamilton-Jakobi-Bellman Equation

The solution to the problem is given by the Bellman equation

Vt(X t) = EX t
min

ut

E
(

y2
t+1 + Vt+1(X t+1)

∣

∣

∣
X t

)

The state is X t = yt ,yt−1,yt−2, . . . ,y0,ut−1,ut−2, . . . ,u0. The
derivation is general applies also to

xt+1 = f (xt ,ut ,et)

yt = g(xt ,ut ,vt)

min E
∑

q(x1,ut)

How to solve the optimization problem?
The curse of dimensionality: Xt has high dimension



A Sufficient Statistic - Hyperstate

It can be shown that a sufficient statistic for estimating future
outputs is yt and the conditional distribution of b given X t . In
our setting the conditional distribution is gaussian N

(

b̂t ,Pt

)

b̂t = E(bpX t), Pt = E [(b̂t − b)2pX t ]

b̂t+1 = b̂t + Kt [yt+1 − yt − b̂tut ] = b̂t + Ktet+1

Kt =
utPt

σ 2 + u2
t Pt

Pt+1 = [1− Ktut ]Pt =
σ 2Pt

σ 2 + u2
t Pt

In our particular case the conditional distrubution depens only
on by y , b̂ and P - a significant reduction of dimensionality!



The Bellman Equation

Vt(X t) = EX t
min

ut

E
(

y2
t+1 + Vt+1(X t+1)

∣

∣

∣
X t

)

Use hyperstate to replace
X t = yt ,yt−1,yt−2, . . . ,y0,ut−1,ut−2, . . . ,u0 with yt , b̂t ,Pt .
Introduce

Vt(yt , b̂t ,Pt) = min
Ut

(

E

T
∑

k=t+1

y2
k

∣

∣

∣

∣

yt , b̂t ,Pt

)

yt+1 = yt + b̂tut + et+1, b̂t+1 = b̂t + Ktet+1, Pt+1 =
σ 2Pt

σ 2 + u2
t Pt

and the Bellman equation becomes

Vt(y , b̂,P) = min
u

E
(

y2
t + Vt+1

(

yt+1, b̂t+1,Pt+1
)∣

∣y , b̂t ,Pt

)



Short Time Horizon - 1 Step Ahead
Consider situation at time t and look one step ahead

VT−1(y , b̂,P) = min
u

E

T
∑

k=T

y2
k = min

u
y2

T

yT = yT−1 + buT−1 + eT

We know yt have an estimate b̂ of b with covariance P

VT (y , b̂,P) = min
u

Ey2
T = min

u

(

(y + b̂u)2 + u2P +σ 2
)

= min
u

(

y2 + 2yb̂u + u2(b̂2 + P) +σ 2
)

= σ 2 +
Py2

b̂2 + P

where minimum occurs for

u = − b̂

b̂2 + P
y [ u = −1

b̂
y as P → 0

These control laws are called cautious control and certainty
equivalence control (Herbert Simon).



The Solution and Scaling

Vt(y , b̂,P) = min
u

(

(y + b̂u)2 +σ 2 + u2P + Vt+1
(

yt+1, b̂t+1,Pt+1)
)

VT (y , b̂,P) = σ 2 +
Py2

b̂2 + P

Iterate backward in time. An important observation, VT (y , P̂,P)
does not depend on y , state is thus two-dimensional!!
Scaling

η =
y

σ
. β =

b̂√
P
, µ =

u
√

P

σ

Introduce
Two functions: the value function and the policy function



Controller Gain - Cautious Control

u = − b̂

b̂2 + P
y = Ky ,η =

y

σ
. β =

b̂√
P
,



Solving the Bellman Equation Numerically
The scaled Bellman equation

Wt(η, β ) = min
µ

Ut(η, β ,µ), ϕ (x) =
1√
2π

e−x2/2

where

Ut(η, β ,µ) = (η + β µ)2 + 1 + µ2

+

∫ ∞

−∞

(

Wt+1(η + β µ + ǫ

√

1 + µ2, β

√

1 + µ2 + µǫ
)

ϕ (ǫ)dǫ

Solving minimization gives control law µ = Π(η, β ), µ = u
√

P
σ ,

u = σ√
P Π(η,β )

Numerics:
◮ Transform to the interval (0 1), quantize U function

128$ 128
◮ Store the a gridded version of the function U(η, β ,mu)
◮ Evaluate the function W (η, β ,µ) by extrapolation, and

numeric integration
◮ Minimize W (η, β ,µ) with respet to µ



Controller Gain - 3 Steps

K (η, β ) larger than 3 not shown



Understanding Probing

Notice jump!!



Controller gain for 30 Steps



Cautious Control - Drifting Parameters



Dual Control - Drifting Parameters



Comparison

Cautious Control Dual Control
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Summary

◮ A glimpse of an interesting and useful field of control
◮ Nonlinear and not trivial to analyse and design
◮ A turbulent history
◮ Now reasonably well understood
◮ A number of successful industrial applications
◮ Cnnections to learning

◮ Dual control and probing - can we learn when to probe?
◮ Representation of functions of many variables a key
◮ Can neural be used to avoid curse of dimensionality?

◮ Many issues not covered
◮ Identificaton in closed loop
◮ The need for excitation
◮ Robustness
◮ Relay auto-tuning of PID controllers > 105 controllers

KJÅ and B. Wittenmark. Adaptive Control. Second Edition. Dover 2008.


