We Don’t Need No Annotation

(Efficient Training for Image Retrieval)

Ondra Chum

Visual Recognition Group
Department of Cybernetics, Faculty of Electrical Engineering
CTU in Prague



Outline

Algorithmic supervision for CNN training
(local features based methods)

e CNN fine-tuning for efficient image retrieval
o Sketch based image retrieval with CNN descriptors

Unsupervised metric learning from data manifolds



CNN fine-tuning for
image retrieval

Filip Radenovi¢ Giorgos Tolias

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning
with Hard Examples, In ECCV 2016



Image Retrieval Challenges

Severe occlusions Visually similar but different objects
Old school: local features, photometric normalization, geometric constraints
CNNs: lots of training data, provides image embedding, nearest neighbor search
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Lots of Training Examples

Training

gl | || ||

Image annotations

Large Internet Convolutional Neural
photo collection Network (CNN)
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Lots of Training Examples

Manual cleaning of
the training data
done by Researchers

Very expensive $$$$ ’

amazon
mechanical turk™ = I I I I I I
Artificial Artificial Intelligence

Not accurate
Large Internet Not free $ Convolutional Neural
photo collection Network (CNN)

’ Automated extraction "

of training data

Accurate

Free\
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CNN Image Retrieval

e Image representation created from CNN activations of a
network pre-trained for classification task

[Gong et al. ECCV’14, Razavian et al. arXiv’'14, Babenko et al. ICCV’15,
Kalantidis et al. arXiv'15, Tolias et al. ICLR’16]

! y
$"J. Ol el i T ot :
- o ‘ ..\ N v)
‘\

= L4
- -_ —d STy ) i
o e | W,
L s -y
), 4 L 3
L D ),

Images from ImageNet.org

+ Retrieval accuracy suggests generalization of CNNs

- Trained for image classification, NOT retrieval task
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CNN Image Retrieval
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CNN Image Retrieval

 CNN network re-trained using a dataset that contains landmarks and
buildings as object classes.

[Babenko et al. ECCV’14]

+ Training dataset closer to the target task

- Final metric different to the one actually optimized

- Constructing training datasets requires manual effort



CNN Image Retrieval
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CNN Image Retrieval

 NetVLAD: end-to-end fine-tuning for image retrieval. Geo-tagged
dataset for weakly supervised fine-tuning.

[Arandjelovic et al. CVPR’16]

+ Training dataset corresponds to the target task
+ Final metric corresponds to the one actually optimized

- Training dataset requires geo-tags



CNN Image Retrieval
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CNN learns from BoW — Training Data

Inp Camera Orientation Known
Number of Inliers Known

]
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Hard Negative Examples

Negative examples: images from different 3D models than the anchor
Hard negatives: closest negative examples to the anchor
Only hard negatives: as good as using all negatives, but faster

| increasing CNN descriptor distance to theanchor

the most similar naive hard negatives diverse hard negatives
CNN descriptor top k by CNN top k: one per 3D model

anchor

o
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F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016
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Hard Positive Examples

Positive examples: images that share 3D points with the anchor
Hard positives: positive examples not close enough to the anchor

random from
anchor top 1 by CNN top 1 by BowW top k by Bow

used in NetVLAD
F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 15/55



CNN Siamese Learning

Query Convolutional Layers Pooling Descriptor
Dx1
—> MAC & m=s) | CNN
L2-norm desc.
Pair Label s l

MATCHING PAIR  |li=gositvell )

0 — negative

Dx1
—> MAC & m=) | CNN
L2-norm desc.
Positive Convolutional Layers Pooling Descriptor

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016
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CNN Siamese Learning

Query Convolutional Layers Pooling Descriptor
Dx1
—> —> MAC & m=s) | CNN
_ L2-norm desc.
Pair Label - l

NON-MATCHING PAIR |g=2=20 =

Dx1
—> MAC & m=s) | CNN
L2-norm desc.
Convolutional Layers Pooling Descriptor

F. Radenovic, G. Tolias and O. Chum, CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples, In ECCV 2016 17/55



Component Contributions (AlexNet)

post-processing

end-to-end learning

Dx1

optional

Careful choice of positive and negative

training images makes a difference

|MAC: learned whitening |

|MAC: random(top k BoW) + top 1/ model CNN |

MAC: top 1 BoW +top 1/ model CNN

MAC: top 1 CNN +top 1/ model CNN

| MAC: top 1 CNN + top k CNN

| MAC: off-the-shelf

global max
® | pooling & CNN ® | | whitening dim
L2-norm desc. reduction
68.9
67.
67.1
63.9
62 2 63.1["
60.2
59.7
56.7
56.2p
51.6
I
Oxford 5k Paris 6k
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Global Pooling

end-to-end learning post-processing
global Dx1 optional
pooling & CNN ®» | [ whitening | ® dim
L2-norm desc. reduction
MAC max pooling Maximum Activations of Convolutions [Tolias et al. ICLR’16]
SPoC sum pooling Sum-Pooled Convolutional [Babenko et al. ICCV’15]
GeM generalized mean pooling Generalized Mean

&=

p=1 -— 1 Z 2P — p=inf
average pooling n = ! max pooling
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Careful choice of positive and negative

Component Contributions (AlexNet)

training images makes a difference

GeM: learned whitening

GeM: random(top k BoW) + top 1/ model CNN

| MAC:

learned whitening |

| MAC:

random(top k BoW) + top 1/ model CNN

MAC:

top 1 BoW +top 1/ model CNN

MAC:

top 1 CNN + top 1/ model CNN

| MAC:

top 1 CNN + top k CNN

| MAC:

off-the-shelf

67.7

62.2

60.2
50.7. @1
56.7
56.21
44,

Oxford 5k

Paris 6k
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Teacher vs. Student (VGG)

BoW(16M)+R+QE 84.9 79.5 32.4 (7.3
CNN-MAC(512D) 79.7 73.9 82.4 4.6



Teacher vs. Student (VGG)

BoW(16M)+R+QE 34.9 79.5 32.4 77.3
CNN-MAC(512D) 79.7 /3.9 32.4 74.6
CNN-GeM(512D) 86.4 81.3 88.1 81.7
CNN-GeM(512D)+QE 90.7 88.6 92.2 38.0

Our CNN with GeM layer surpasses
its teacher on all datasets!!! BUT...



query
region

query
region

Teacher vs. Student for small objects

BoW+geometry
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CNN fine-tuning for
sketch-based image retrieval

Filip Radenovic Gioraos Tolias



Sketch-based Image Retrieval
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Sketch-based Image Retrieval




Training Data

Categories rabbit

airplane

a) motorbike  b) present  ¢) hot-dog d) lion ¢) potted plant

H=lr &

f) mouse (2 clusters) g) flying bird (2 clusters)  h) radio (2 clusters)
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(relatively cheap)

Matching Sketches to Images

Classical Approach
shape matching

L

edge map = sketch

alignment

Modern Approach
end-to-end deep learning

(very expensive)

GoogleNet GoogleNet
Sketch Photo

l 4‘ Embedding loss ————

| Classification loss Classification loss

+ category + similarity
- man-years of annotation
- very difficult to train

Ours
deep shape matching

]

edge map @ sketch

shape information only

simple cost & training
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Category Retrieval

Shape based retrieval cannot do that ®



Category Retrieval
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Standard image search can do that for years already
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Edge-maps vs Sketches
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Training without a Single Sketch

CNN Siamese learning
Positive (from geometrically verified images) contrastive loss
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EdgeMAC Architecture

edge detector end-to-end learning post-processing

edae global max Dx1 optional
fiItergin D e ® | pooling& | ® [ CNN ®» | [ whitening | ® dim
9 L2-norm desc. reduction

VGG 15t layer RGB averaged to intensity

[Dollar & Zitnick ICCV’13]

edge filtering layer edges filtered
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Results on Flickr 15k

L Method Dim mAP
| S Hand-crafted methods

GF-HOG [2 1] n/a 12.2
I — S-HELO [37] 1296 12.4
Lt R == 7 HLR+S+C+R [51] wa 17.1
S = GF-HOG extended [6] n/a 18.2
- PerceptualEdge [ 3] 3780 18.4
LKS [3¥] 1350 24.5
AFM [17] 243 30.4

[21] Hu & Collomosse: A performance evaluation of gradient CNN-based methods
field hog descriptor for sketch based image retrieval. CVIU’13 Sketch-a-Net+EdgeBox [3] 5120 7.0
Siamese network [ 7] 64 19.5
Shoes network [33]F 256 29.9
Chairs network [53]T 256 29.8
Sketchy network [ 17 1024 34.0
Quadruplet network [+ 1] 1024 32.2
Triplet no-share network [ /] 128 36.2
* EdgeMAC 512 46.3

Re-ranking methods
AFM+QE [47] 755 57.9
Sketch-a-Net+EdgeBox+GraphQE [5] n/a 32.3
* EdgeMAC+Diffusion n/a 68.9

Radenovic, Tolias, Chum: Generic Sketch-Based Retrieval Learned without Drawing a Single Sketch, arXiv4 /55
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Results on Shoes, Chairs and Handbags

Fine-grained recognition of shoes / chairs

[53] Q. Yu et al.: Sketch me that shoe. CVPR'16.
ﬁﬂj:4 24494
ff“’ .;__*éﬁ'ﬁ / “f -V . L,

JJJJJ

D rEGos Y AB

L 7 B e =) J—] 1 A A
g R d L) ,’ﬁa_-,.:l:f-f". ;"_’iﬁj{'f__: KE’?}% D i &' E’E—___-'j ﬁﬁf}f H r'—é;i [l[i;
[ (== T rr— __,{ = I.. ]

qdma A M

I & 5 @ F
AT B o

— l' - |
-\_-__ L. i

|
|
|
|
|
|
|
|
I
[
[
[
I
I
!
|
|
|
|
|

shoes chairs
Image from https://www.eecs.gmul.ac.uk/~gian/Project_cvprl6.html
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Results on Shoes, Chairs and Handbags

f . Shoes Chairs Handbags
Method Dim acc.@] lacc.@]0| | acc.@] |acc.@10| | acc.@]1 |acc.@Q10
BoW-HOG + rankSVM [22] 500 17.4 67.8 28.9 67.0 2.4 10.7
Dense-HOG  + rankSVM [22] 200K 24.4 65.2 52.6 93.8 15.5 40.5
Sketch-a-Net + rankSVM [22] 512 20.0 62.6 47.4 82.5 9.5 44.1
CCA-3V-HOG + PCA [15] n/a 15.8 63.2 53.2 90.3 — —
Shoes  mnet [22]T 256 || 52.2 | 92.2 65.0 | 92.8 23.2 | 59.5
Chairs net [_}_}]T 256 30.4 75.7 72.2 99.0 26.2 58.3
Handbags net [32] 256 — — — — 39.9 82.1
Shoes net + CFF + HOLEF [32] 512 61.7 94.8 — — — —
Chairs net + CFF + HOLEF [32] 512 — — 81.4 95.9 — —
Handbags net + CFF + HOLEF [32] 512 — — — — 49.4 82.7
* EdgeMAC 512 40.0 76.5 85.6 95.9 35.1 70.8
* EdgeMAC + whitening 512 54.8 92.2 85.6 97.9 51.2 85.7
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Beyond sketches

Image-based Edge-based
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Shape matching for domain
generalization
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Domain generalization via shape matching

» edae global max Dx1
fiIte?in » ®» | pooling & ®» | CNN
J L2-norm desc.
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Linear classifier on edgeMAC descriptors
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Results on domain generalization

Pre-trained (RGB) Siamese [/] (RGB) Ours (edge map) Pre-trained+Ours
Test+ A C P _S A C P _S A C P _S A C P S
Train A N/A 5928 33.1 N/A [5985 429 N/A [55.9 61.2 . 38.4
Train C N/A 37.0 [61.0 N/A 51.6 45.2 N/A 57.3 55.3
Train P . 33.3 N/A 24.8 [66.0 38.0 N/A 31.9 454 423 N/A 46.3 34.0 N/A 27.61
Train S 31.9 49.5 42.5 N/A| 38.7 49.3 44.4 N/A | 34.8 |63W0) 43.3 N,/A 33.7 43.4 N/A
Train 3 78.0 68.0 [94.4] 471 715 64.3 85.1 56.0 53.8 67.9 64.5 [72.7] [B0.0][63.7] 93.7 62.7

Mean 3 71.9 69.2 65.2 76.2

A: Artwork C: Cartoon P: Photo S: Sketch
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Metric Learning Without Labels

Ahmet Iscen Giorgos Tolias Yannis Avrithis Teddy Furon
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Euclidean & manifold distance

Mapping: Images to R" descriptors

The Euclidean distance is locally a good similarity
measure

Related images lie on non-linear manifolds

Iscen, Tolias, Avrithis, Furon, Chum, Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations, CVPR'17
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Euclidean & manifold distance

Mapping: Images to R" descriptors

The Euclidean distance is locally a good similarity
measure

Related images lie on non-linear manifolds

Iscen, Tolias, Avrithis, Furon, Chum, Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations, CVPR'17
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ft

Diffusion

— (X

S

ff=1 + (1 - a)

s

Normalized (sparse) affinity matrix

Vector of similarities to the query

AN

=X=3

k-Nearest Neighbour graph

D<a<l

Random walk
implicitly considers all paths
(visual proof)
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Diffusion
lterative: ft — ant_l -+ (]_ — O{)y

Closed form: f* — £—1 where ﬁa _

I, —aS

Large, non-sparse Large, sparse

k-Nearest Neighbour graph
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lterative:

Closed form:

. Eo:f*

Contributions on Diffusion for Retrieval
aSt 4+ (1 —a)y

f! =

f* =

=Y

System of linear equations, Conjugate Gradients

£—1

Y

Generalization to novel queries (not part of the dataset)

Diffusion can be efficiently applied to image parts

- Significant impact on CNN-based retrieval of small object

. £F —

Ly =

- Two orders of magnitude faster online diffusion

Ul

AU

o

Y

Low-rank approximation

Jacobi solver

Intractable

Small, non-sparse

47 | 55



Euclidean vs Manifold Distance

Diffusion-guided to sample hard negatives and positives
« Avoid computationally expensive SfM models

Hard positives (green): S™ = M(y)\ E(y) Hard negatives (red): S™ = E(y)\ M(y)

A. Iscen, G. Tolias , Y. Avrithis, O. Chum, Mining on Manifolds: Metric Learning without Labels, In CVPR 2018
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Mining of training samples

Anchors Mined positives Euclidean kNN Mined negatives Euclidean non-kNN

E -
i
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Experiments on instance search

Oxford F’a ris
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Experiments on instance search
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Mining of training samples

CUB 200- 2011

Anchors Mined positives Euclidean kNN Mined negatives Euclidean non-kNN
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Experiments on fine-grained recognition

60
50
40 ¢

Recall©1

30

Fine-grained recognition

_ B-200-2011

IS S

No labels | | CUB labels

[ ]

I
1|l
i

1]

CUB-200-2011

Il Triplets (semi-hard) [7]

ImageNet
Cyclic Match [3]

Lifted Structure [4]
Smart Mining [2]
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Online code and data

Siamese training code and training data

http.//cmp.felk.cvut.cz/cnnimageretrieval/
Image retrieval (ECCV 2016)

Matlab package using MatConvNet

Python package using PyTorch

Sketch based image retrieval (ECCV 2018)
Matlab package using MatConvNet

Region manifold search (CVPR 2017)

https.//github.com/ahmetius/diffusion-retrieval
* Matlab package

54 /55


http://cmp.felk.cvut.cz/cnnimageretrieval/
https://github.com/ahmetius/diffusion-retrieval
https://github.com/ahmetius/diffusion-retrieval
https://github.com/ahmetius/diffusion-retrieval

Conclusions
BOW combined SfM is a good teacher

 no human annotation needed for CNN image retrieval
CNN outperforms its teacher on standard benchmarks
BOW still better for certain tasks

no human annotation needed for CNN sketch based retrieval
generic CNN shape retrieval performs well
o standard and fine-grained sketch based retrieval
 significant appearance changes, domain generalization

Mining on Manifolds

« fine tuning CNNs without supervision
e using diffusion to compute manifold distance



Thank you.
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