Safe model-based learning for robot control

Breaking your robot is only fun in simulation
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The Promise of Robotics = Physical Interaction

Virtual world
of data &
information.
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The Promise of Robotics = Physical Interaction

Virtual world Virtual world

of data & \>
information. Real world

Exponential increase in complexity!
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The Real World Is Complex | Robots Today... and Tomorrow

Dedicated Environments Human-centered Environments

Manually programmed.

Based on a-priori knowledge. Unknown, unpredictable and changing

Need safe and high-performance behavior

Robots are limited by our under-
standing of the system/environment. Robots must safely learn and adapt
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Characteristics of Robot Learning

Robots are feedback systems — Agent —
, , Reward 7°¢ Action Q¢
Strict safety requirements
. State X¢ _
Resource constraints (data, payload, — Environment —
communication) Reinforcement Learning: An Introduction

R. Sutton, A.G. Barto, 1998

Results to date have been limited to
learning single tasks, and demonstrated in

simulation or lab settings.

NEXT CHALLENGE: rgqlistic app.lication sFenarios - ALLb.§Y§TEMSGO
— safety, data efficiency, online learning —
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Work at the Dynamic Systems Lab (Prof. Schoellig)

Approach

Control = science of feedback
theory (stability, performance,

robustness)

Research Characteristics

Algorithms that run on real robots.
e Data efficiency
* Online adaptation and learning
e Safety guarantees during learning in a closed-loop system
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Performance and Safety: Fast Swarm Flight
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Safety: Off-Road Driving
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Prerequisites for safe reinforcement learning

Understand model and Define safety, analyze a Algorithm to safely
learning dynamics model for safety acquire data

Safe Model-based Reinforcement Learning
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Overview

Understand model and
learning dynamics
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Define safety, analyze a
model for safety

Safe Model-based Reinforcement Learning
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Algorithm to safely
acquire data
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Learning a model

Dynamics
Tip1 = [, ur) + (T, ug)
N——— \——
a priori model unknown model

Model error must decrease with measurements

Need to quantify model error
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(Gaussian process

Input
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(Gaussian process
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(Gaussian process
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(Gaussian process

Output

Cov[f(z), f(2)] = k(z, 2')

Input
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A Bayesian dynamics model

Dynamics

Tti1 — f(-fCt,Ut) T g(aft,ut)
N —’ \——

a priori model unknown model

fl,u) 4 g(z,u)

Online Learning of Linearly Parameterized Control Problems
Y. Abbasi-Yadkori, PhD thesis 2012
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plr,u) = f(z,u)

On Kernelized Multi-armed Bandits
S.R. Chowdhury, A. Gopalan, ICML 2017
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Samples from the Gaussian process prior

state

The transition dynamics are correlated!
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Samples from the Gaussian process prior

state

The transition dynamics are correlated!
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Samples from the Gaussian process prior

state

— -

e

The transition dynamics are correlated!

time
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Overview

Understand model and
learning dynamics
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Define safety, analyze a
model for safety

Safe Model-based Reinforcement Learning
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Algorithm to safely
acquire data
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Safety definition

®
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Safety for learned models

Dynamics Policy
Tep1 = f(@4, ue) +  h(@t, ut) + uy = ()
N—— S——
a priori model unknown model

s

= i

< ‘-, Stability?
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Lyapunov functions

Tiy1 = f(xg, w(x,0))

[A.M. Lyapunov 1892]
V(CUH_l) < V(il?t)
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Lyapunov functions

s = fzen(z.0)) + glre(r.0) V)
V(ze41) < Vi(x)
Pr >1—0
vz € V(c) \ V(co)
RN
J 7
J ~
V(C()) X
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Region of attraction

Safe Model-based Reinforcement Learning with Stability Guarantees
F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017

Initial safe policy 7

Theorem (informally):

Under suitable conditions

can identify (near-)maximal
subset of X on which mis stable,
while never leaving the safe set
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llustration of safe learning

Action
Uncertainty

V(co)

Lyapunov

State

Safe Model-based Reinforcement Learning with Stability Guarantees
F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017
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llustration of safe learning

Action
Uncertainty

V(co)

Lyapunov

State

Safe Model-based Reinforcement Learning with Stability Guarantees
F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017
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Lyapunov function

Finding the right Lyapunov function is difficult! V() = ¢g(x)" ¢g(z)

Weights - positive-definite

y=—1
Nonlinearities - trivial nullspace

Decision boundary  V(x) =1

V(CUt_|_1) < V(a:t)
v, € V(e) \ V(o)

The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamic Systems
S.M. Richards, F. Berkenkamp, A. Krause, CoRL 2018
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Overview

Understand model and
learning dynamics
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Define safety, analyze a
model for safety

Safe Model-based Reinforcement Learning
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Algorithm to safely
acquire data
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Model predictive control

N-—1
minimize Z J(x,up) + JIn(xn) mission objective
{uo,ul,...,uN_l} E—0
subject to ro = T system state
Tri1 = f(ar, ug) system dynamics
Tr € Xk state constraints
ur € Uy input constraints

Makes decisions based on predictions about the future

Includes input / state constraints
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Model predictive control on a robot
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Robust constrained learning-based NMPC enabling reliable mobile robot path tracking

C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016

Video at
https://youtu.be/3xR

NmMNV5SEfk
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https://youtu.be/3xRNmNv5Efk

Model predictive control

N-—1
minimize Z J(rg,ug) + Jn(xn) mission objective
{u()aula"'auN—l} L—0
subject to xo = T system state
Tri1 = f(xr,ur) + g(og, ug) system dynamics
Tr € X state constraints
ur € U input constraints

Problem: True dynamics f(z,u) + g(x,u) are unknown!
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Forward-propagating uncertainty

Outer approximation contains true dynamics for
all time steps with probability at least1 — o

Learning-based Model Predictive Control for Safe Exploration
T. Koller, F. Berkenkamp, M. Turchetta, A. Krause, CDC, 2018
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Safe model-based learning framework

X

first step same exploration trajectory

Theorem (informally):

Under suitable
conditions can always
guarantee that we are
able to return to the
safe set

safety trajectory
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Safe model-based learning framework

X

first step same exploration trajectory

L0

Exploration limited by size of

safety trajectory ‘he safe set
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ow should we collect data for a control task?
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Optimizing expected performance

We design our cost functions to be helpful for optimization

_N—1 -
Exploration objective: =~ minimize E Z J(xk, uk) + In(zN)

{anula"'auN—l} L —0 _

‘‘‘‘‘‘‘‘‘
'ﬂ
'.
-
<
A

Driving too fast Slow down for safety Faster driving after learning
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Example

Video at
https://youtu.be/3xR
NMNvV5Efk

Robust constrained learning-based NMPC enabling reliable mobile robot path tracking
C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016
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https://youtu.be/3xRNmNv5Efk

Summary and Outlook

Understand model and
learning dynamics

Gaussian processes

https://berkenkamp.me

" " Institute for Aerospace Studies
ETHzurich &

X UNIVERSITY OF TORONTO

Define safety, analyze a
model for safety

Lyapunov stability

Safe Model-based Reinforcement Learning

Felix Berkenkamp

Algorithm to safely
acquire data

Model predictive control

www.dynsyslab.org
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http://www.dynsyslab.org/

