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Breaking your robot is only fun in simulation



The Promise of Robotics = Physical Interaction
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Virtual world 
of data & 
information.



The Promise of Robotics = Physical Interaction
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Virtual world 
of data & 
information.

Virtual world

Real world

Exponential increase in complexity! 



The Real World Is Complex | Robots Today…  and Tomorrow 
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Human-centered EnvironmentsDedicated Environments

Manually programmed.
Based on a-priori knowledge.

Robots are limited by our under-
standing of the system/environment.

Unknown, unpredictable and changing
Need safe and high-performance behavior

Robots must safely learn and adapt



Characteristics of Robot Learning

Robots are feedback systems

Strict safety requirements

Resource constraints (data, payload, 
communication)
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State

Action
Agent

Environment

Reward

Reinforcement Learning: An Introduction
R. Sutton, A.G. Barto, 1998

Results to date have been limited to 
learning single tasks, and demonstrated in 

simulation or lab settings. 

NEXT CHALLENGE:  realistic application scenarios 
— safety, data efficiency, online learning —



Work at the Dynamic Systems Lab (Prof. Schoellig)

Research Characteristics  

Algorithms that run on real robots.

• Data efficiency

• Online adaptation and learning

• Safety guarantees during learning in a closed-loop system
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Machine 
Learning

Control 
theory

= science of feedback
(stability, performance, 
robustness)

Approach



Performance and Safety:  Fast Swarm Flight
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Safety:  Off-Road Driving
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Prerequisites for safe reinforcement learning
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Safe Model-based Reinforcement Learning

Understand model and
learning dynamics

Algorithm to safely 
acquire data

Define safety, analyze a 
model for safety



Overview
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Safe Model-based Reinforcement Learning

Understand model and
learning dynamics

Algorithm to safely 
acquire data

Define safety, analyze a 
model for safety



Learning a model
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Dynamics
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Need to quantify model error

Model error must decrease with measurements



Gaussian process
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Gaussian process
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Gaussian process
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Gaussian process
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Gaussian process
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Gaussian process
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Gaussian process
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A Bayesian dynamics model
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Dynamics

Felix Berkenkamp

Online Learning of Linearly Parameterized Control Problems
Y. Abbasi-Yadkori, PhD thesis 2012

On Kernelized Multi-armed Bandits
S.R. Chowdhury, A. Gopalan, ICML 2017



Samples from the Gaussian process prior

20Felix Berkenkamp

time

state

The transition dynamics are correlated!



Samples from the Gaussian process prior
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Samples from the Gaussian process prior
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time

state

The transition dynamics are correlated!



Overview

23Felix Berkenkamp

Safe Model-based Reinforcement Learning

Understand model and 
learning dynamics

Algorithm to safely 
acquire data

Define safety, analyze a 
model for safety



Safety definition
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unsafe
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robust, control-invariant

prior knowledge



Safety for learned models
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Dynamics Policy

+

Stability?



Lyapunov functions 

26

[A.M. Lyapunov 1892]
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Lyapunov functions 
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Region of attraction
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unsafe

Theorem (informally):

Under suitable conditions
can identify (near-)maximal 
subset of X on which π is stable, 
while never leaving the safe set

Initial safe policy

Safe Model-based Reinforcement Learning with Stability Guarantees
F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017
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Illustration of safe learning
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Policy

Need to safely explore!
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Safe Model-based Reinforcement Learning with Stability Guarantees
F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017



Illustration of safe learning
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Policy
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Safe Model-based Reinforcement Learning with Stability Guarantees
F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017



Lyapunov function
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Finding the right Lyapunov function is difficult!

The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamic Systems
S.M. Richards, F. Berkenkamp, A. Krause, CoRL 2018

Weights - positive-definite
Nonlinearities - trivial nullspace

Decision boundary



Overview
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Safe Model-based Reinforcement Learning

Understand model and 
learning dynamics

Algorithm to safely 
acquire data

Define safety, analyze a 
model for safety



Model predictive control
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Makes decisions based on predictions about the future

Includes input / state constraints



Model predictive control on a robot
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Robust constrained learning-based NMPC enabling reliable mobile robot path tracking
C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016

Video at
https://youtu.be/3xR
NmNv5Efk

https://youtu.be/3xRNmNv5Efk


Model predictive control
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Problem: True dynamics                                 are unknown!



Outer approximation contains true dynamics for 
all time steps with probability at least 

Forward-propagating uncertainty
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Learning-based Model Predictive Control for Safe Exploration 
T. Koller, F. Berkenkamp, M. Turchetta, A. Krause, CDC, 2018
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Safe model-based learning framework
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unsafe safety trajectory

exploration trajectoryfirst step same

Theorem (informally):

Under suitable
conditions can always
guarantee that we are
able to return to the
safe set
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Safe model-based learning framework
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unsafe safety trajectory

exploration trajectoryfirst step same

Exploration limited by size of 
the safe set!
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How should we collect data for a control task?



Optimizing expected performance
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We design our cost functions to be helpful for optimization

Driving too fast Slow down for safety Faster driving after learning

Exploration objective:



Example
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Robust constrained learning-based NMPC enabling reliable mobile robot path tracking
C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016

Video at
https://youtu.be/3xR
NmNv5Efk

https://youtu.be/3xRNmNv5Efk


Summary and Outlook
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Safe Model-based Reinforcement Learning

Understand model and 
learning dynamics

Algorithm to safely 
acquire data

Define safety, analyze a 
model for safety

Gaussian processes Lyapunov stability Model predictive control

https://berkenkamp.me www.dynsyslab.org
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My outstanding collaborators at U of T (Tim 
Barfoot) and ETH (Andreas Krause, Raffaello 
D’Andrea and the whole FMA team).

www.dynsyslab.org

http://www.dynsyslab.org/

