Safe model-based learning for robot control

@LCCC Workshop on Learning and Adaptation for Sensorimotor Control – Lund University October 2018

Se Institute for Aerospace Studies UNIVERSITY OF TORONTO

Breaking your robot is only fun in simulation

Felix Berkenkamp, Andreas Krause, Angela P. Schoellig

Angela Schoellig 2

The Promise of Robotics = Physical Interaction

Virtual world of data & information.

The Promise of Robotics = Physical Interaction

Angela Schoellig 3

The Real World Is Complex | Robots Today… and Tomorrow

Dedicated Environments **Environments** Human-centered Environments

Angela Schoellig 4

Manually programmed. Based on a-priori knowledge.

Robots are limited by our understanding of the system/environment.

Unknown, unpredictable and changing Need safe and high-performance behavior

Robots must safely learn and adapt

Characteristics of Robot Learning

Robots are feedback systems Strict safety requirements Resource constraints (data, payload, communication)

Reinforcement Learning: An Introduction R. Sutton, A.G. Barto, 1998

Results to date have been limited to learning single tasks, and demonstrated in simulation or lab settings.

NEXT CHALLENGE: realistic application scenarios — safety, data efficiency, online learning —

Work at the Dynamic Systems Lab (Prof. Schoellig)

Research Characteristics

Algorithms that run on real robots.

- Data efficiency
- Online adaptation and learning
- Safety guarantees during learning in a closed-loop system

Performance and Safety: Fast Swarm Flight

Angela Schoellig 7

Safety: Off-Road Driving

Angela Schoellig 8

Prerequisites for safe reinforcement learning

Safe Model-based Reinforcement Learning

Felix Berkenkamp 9

Algorithm to safely acquire data

Safe Model-based Reinforcement Learning

Felix Berkenkamp 10

Algorithm to safely acquire data

Learning a model

Need to quantify model error

Model error must decrease with measurements

Input

Input

ETH ZÜrich SUNIVERSITY OF TORONTO

ETH ZÜrich SUNIVERSITY OF TORONTO

Input

Input

A Bayesian dynamics model

Felix Berkenkamp

$\mu(x, u) = f(x, u)$

Online Learning of Linearly Parameterized Control Problems Y. Abbasi-Yadkori, PhD thesis 2012

On Kernelized Multi-armed Bandits S.R. Chowdhury, A. Gopalan, ICML 2017

Samples from the Gaussian process prior

time

Samples from the Gaussian process prior

time

Samples from the Gaussian process prior

time

Safe Model-based Reinforcement Learning

Felix Berkenkamp 23

Algorithm to safely acquire data

Safety definition

Felix Berkenkamp

ETHZÜLICH SUNIVERSITY OF TORONTO

Safety for learned models

$u_t = \pi(x_t)$

+

Stability?

Lyapunov functions

Lyapunov functions

Region of attraction

Theorem (informally):

Under suitable conditions can identify (near-)maximal subset of X on which π is stable, while never leaving the safe set

Safe Model-based Reinforcement Learning with Stability Guarantees F. Berkenkamp, M. Turchetta, A.P. Schoellig, A. Krause, NIPS, 2017

Felix Berkenkamp

Initial safe policy π

Illustration of safe learning

Felix Berkenkamp

Safe Model-based Reinforcement Learning with Stability Guarantees

Illustration of safe learning

Felix Berkenkamp

Safe Model-based Reinforcement Learning with Stability Guarantees

Lyapunov function

 $V(x) = \phi_{\theta}(x)^{\mathrm{T}}$ Finding the right Lyapunov function is difficult!

The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamic Systems S.M. Richards, F. Berkenkamp, A. Krause, CoRL 2018

$$
^{\Gamma }\phi _{\theta }(x)
$$

Nonlinearities - trivial nullspace

$$
\text{bary} \qquad V(x) = 1
$$

$$
V(x_{t+1}) < V(x_t)
$$
\n
$$
\forall x_t \in \mathcal{V}(c) \setminus \mathcal{V}(c_0)
$$

Safe Model-based Reinforcement Learning

Model predictive control

Makes decisions based on predictions about the future

Includes input / state constraints

- mission objective
	- system state
- system dynamics
- state constraints
- input constraints

Model predictive control on a robot

Overhead view:

1) Optimal predicted sequence -2) Robot position 3) Desired path vertices

Robust constrained learning-based NMPC enabling reliable mobile robot path tracking C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016

Felix Berkenkamp 34

153

ertex'

Video at [https://youtu.be/3xR](https://youtu.be/3xRNmNv5Efk) NmNv5Efk

Model predictive control

$$
\begin{aligned}\n\text{minimize} & \sum_{\{u_0, u_1, \dots, u_{N-1}\}}^{N-1} J(x_k, u_k) + J_N(x_N) & \text{mission} \\
\text{subject to} & x_0 = \overline{x}_0 & \text{sys} \\
& x_{k+1} = f(x_k, u_k) + g(x_k, u_k) & \text{system} \\
& x_k \in \mathcal{X}_k & \text{state } \text{cc} \\
& u_k \in \mathcal{U}_k & \text{input } \text{cc}\n\end{aligned}
$$

Problem: True dynamics $f(x, u) + g(x, u)$ are unknown!

objective

tem state dynamics onstraints $onstraints$

Forward-propagating uncertainty

Outer approximation contains true dynamics for all time steps with probability at least $1-\delta$

Learning-based Model Predictive Control for Safe Exploration T. Koller, F. Berkenkamp, M. Turchetta, A. Krause, CDC, 2018

Safe model-based learning framework

ETHzürich Institute for Aerospace Studies
UNIVERSITY OF TORONTO

Safe model-based learning framework

ETHzürich Institute for Aerospace Studies
UNIVERSITY OF TORONTO

How should we collect data for a control task?

Optimizing expected performance

We design our cost functions to be helpful for optimization

Exploration objective:

$$
\min_{[u_0, u_1, ..., u_{N-1}]} \mathrm{E} \Bigg[\sum_{k=0}^{N-1} J(x_k, u_k) + J_N(x)
$$

 \blacksquare

Example

Robust constrained learning-based NMPC enabling reliable mobile robot path tracking C.J. Ostafew, A.P. Schoellig, T.D. Barfoot, IJRR, 2016

Felix Berkenkamp 41

Video at [https://youtu.be/3xR](https://youtu.be/3xRNmNv5Efk) NmNv5Efk

Summary and Outlook

Algorithm to safely acquire data

https://berkenkamp.me www.dynsyslab.org

Thanks To…

My Team – Industrial Partners – Funding Agencies

Angela Schoellig 43

My outstanding collaborators at U of T (Tim Barfoot) and ETH (Andreas Krause, Raffaello D'Andrea and the whole FMA team).

www.dynsyslab.org

