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Desiderata

Suppose that the solution to a convex optimization problem has
a compact representation.

Problem data: O(n)

↓

Working memory: O(???)

↓
Solution: O(n)

Can we develop algorithms that provably solve the problem
using storage bounded by the size of the problem data and the
size of the solution?
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Model problem: low rank matrix optimization

consider a convex problem with decision variable X ∈ Rm×n

compact matrix optimization problem:

minimize f (AX )
subject to ‖X‖S1

≤ α (CMOP)

I A : Rm×n → Rd

I f : Rd → R convex and smooth

I ‖X‖S1
is Schatten-1 norm: sum of singular values

assume

I compact specification: problem data use O(n) storage

I compact solution: rankX? = r constant

Note: Same ideas work for X � 0
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Are desiderata achievable?

minimize f (AX )
subject to ‖X‖S1

≤ α

CMOP, using any first order method:

Problem data: O(n)

↓
Working memory: O(n2)

↓
Solution: O(n)
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Application: matrix completion

find X matching M on observed entries

minimize
∑

(i ,j)∈Ω(Xij −Mij)
2

subject to ‖X‖S1
≤ α

I m = rows, n = columns of matrix to complete

I d = |Ω| number of observations

I A selects observed entries Xij , (i , j) ∈ Ω

I f (AX ) = ‖AX −AM‖2

compact if d = O(n) observations and rank(X ?) constant

Theorem: ε-rank of M grows as log(m + n) if rows and cols iid
(under some technical conditions) (Udell and Townsend, 2017)
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Application: Phase retrieval

I image with n pixels x\ ∈ Cn

I acquire noisy nonlinear measurements bi = |〈ai , x\〉|2 + ωi

I relax: if X = x\x
∗
\ , then

|〈ai , x\〉|2 = x\a
∗
i aix

∗
\ = tr(a∗i aix

∗
\ x\) = tr(a∗i aiX )

I recover image by solving

minimize f (AX ; b)
subject to trX ≤ α

X � 0.

compact if d = O(n) observations and rank(X ?) constant 6 / 30



Optimal Storage

What kind of storage bounds can we hope for?

I Assume black-box implementation of

A(uv∗) u∗(A∗z) (A∗z)v

where u ∈ Rm, v ∈ Rn, and z ∈ Rd

I Need Ω(m + n + d) storage to apply linear map

I Need Θ(r(m+ n)) storage for a rank-r approximate solution

Definition. An algorithm for the model problem
has optimal storage if its working storage is

Θ(d + r(m + n)).
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Goal: optimal storage

We can specify the problem using O(n)� mn units of storage.

Can we solve the problem using only O(n) units of
storage?

If we write down X , we’ve already failed.
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A brief biased history of matrix optimization

I 1990s: Interior-point methods
I Storage cost Θ((m + n)4) for Hessian

I 2000s: Convex first-order methods
I (Accelerated) proximal gradient and others
I Store matrix variable Θ(mn)

(Interior-point: Nemirovski & Nesterov 1994; . . . ; First-order: Rockafellar

1976; Auslender & Teboulle 2006; . . . )
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A brief biased history of matrix optimization

I 2008–Present: Storage-efficient convex first-order
methods

I Conditional gradient method (CGM) and extensions
I Store matrix in low-rank form O(t(m + n)) after t iterations
I Requires storage Θ(mn) for t ≥ min(m, n)

I 2003–Present: Nonconvex heuristics
I Burer–Monteiro factorization idea + various opt algorithms
I Store low-rank matrix factors Θ(r(m + n))
I For guaranteed solution, need unrealistic + unverifiable

statistical assumptions

(CGM: Frank & Wolfe 1956; Levitin & Poljak 1967; Hazan 2008; Clarkson

2010; Jaggi 2013; . . . ; Heuristics: Burer & Monteiro 2003; Keshavan et

al. 2009; Jain et al. 2012; Bhojanapalli et al. 2015; Candès et al. 2014;

Boumal et al. 2015; . . . )
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The dilemma

I convex methods: slow memory hogs with guarantees

I nonconvex methods: fast, lightweight, but brittle

low memory or guaranteed convergence
. . . but not both?
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Conditional Gradient Method

‖X‖S1
≤ α

−∇g(X t)

X t

Ht = argmax
‖X‖S1

≤1
〈X , −∇g(X t)〉

X t+1

minimize f (AX ) = g(X )
subject to ‖X‖S1

≤ α
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Conditional Gradient Method

minimize f (AX )
subject to ‖X‖S1

≤ α

CGM. set X 0 = 0. for t = 0, 1, . . .

I compute G t = A∗∇f (AX t)

I set search direction

Ht = argmax
‖X‖S1

≤α
〈X ,−G t〉

I set stepsize ηt = 2/(t + 2)

I update X t+1 = (1− ηt)X t + ηtHt
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Conditional gradient method (CGM)

features:

I relies on efficient linear optimization oracle to compute

Ht = argmax
‖X‖S1

≤α
〈X ,−G t〉

I bound on suboptimality follows from subgradient inequality

f (AX t)− f (AX ?) ≤ 〈X t − X ?,G t〉
≤ 〈X t − X ?,A∗∇f (AX )〉
≤ 〈AX t −AX ?,∇f (AX )〉

to provide stopping condition

I faster variants: linesearch, away steps, . . .
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Linear optimization oracle for MOP

compute search direction

argmax
‖X‖S1

≤α
〈X ,−G 〉

I solution given by maximum singular vector of −G :

−G =
n∑

i=1

σiuiv
∗
i =⇒ X = αu1v

∗
1

I use Lanczos method: only need to apply G and G ∗
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Conditional gradient descent

Algorithm 1 CGM for the model problem (CMOP)

Input: Problem data for (CMOP); suboptimality ε
Output: Solution X?

1 function CGM
2 X ← 0
3 for t ← 0, 1, . . . do
4 (u, v)← MaxSingVec(−A∗(∇f (AX )))
5 H ← −α uv∗

6 if 〈AX −AH, ∇f (AX )〉 ≤ ε then break for

7 η ← 2/(t + 2)
8 X ← (1− η)X + ηH

9 return X
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Two crucial ideas

To solve the problem using optimal storage:

I Use the low-dimensional “dual” variable

zt = AXt ∈ Rd

to drive the iteration.

I Recover solution from small (randomized) sketch.

Never write down X until it has converged to low rank.
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Conditional gradient descent

Algorithm 2 CGM for the model problem (CMOP)

Input: Problem data for (CMOP); suboptimality ε
Output: Solution X?

1 function CGM
2 X ← 0
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Conditional gradient descent

Introduce “dual variable” z = AX ∈ Rd ; eliminate X .

Algorithm 3 Dual CGM for the model problem (CMOP)

Input: Problem data for (CMOP); suboptimality ε
Output: Solution X?

1 function dualCGM
2 z ← 0
3 for t ← 0, 1, . . . do
4 (u, v)← MaxSingVec(−A∗(∇f (z)))
5 h← A(−αuv∗)
6 if 〈z − h, ∇f (z)〉 ≤ ε then break for

7 η ← 2/(t + 2)
8 z ← (1− η)z + ηh

we’ve solved the problem. . . but where’s the solution?
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Two crucial ideas

1. Use the low-dimensional “dual” variable

zt = AXt ∈ Rd

to drive the iteration.

2. Recover solution from small (randomized) sketch.
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How to catch a low rank matrix

if X̂ has the same rank as X ?,
and X̂ acts like X ? (on its range and co-range),

then X̂ is X ?

I see a series of additive updates

I remember how the matrix acts

I reconstruct a low rank matrix that acts like X ?
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Single-pass randomized sketch

I Draw and fix two independent standard normal matrices

Ω ∈ Rn×k and Ψ ∈ R`×m

with k = 2r + 1, ` = 4r + 2.

I The sketch consists of two matrices that capture the range
and co-range of X :

Y = XΩ ∈ Rn×k and W = ΨX ∈ R`×m

I Rank-1 updates to X can be performed on sketch:

X ′ = β1X + β2uv
∗

⇓
Y ′ = β1Y + β2uv

∗Ω and W ′ = β1W + β2Ψuv∗

I Both the storage cost for the sketch and the arithmetic cost
of an update are O(r(m + n)).
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Recovery from sketch

To recover rank-r approximation X̂ from the sketch, compute

1. Y = QR (tall-skinny QR)

2. B = (ΨQ)†W (small QR + backsub)

3. X̂ = Q[B]r (tall-skinny SVD)

Theorem (Reconstruction)

Fix a target rank r . Let X be a matrix, and let (Y ,W ) be a
sketch of X . The reconstruction procedure above yields a rank-r
matrix X̂ with

E ‖X − X̂‖F ≤ 2 ‖X − [X ]r‖F .

Similar bounds hold with high probability.

(Tropp Yurtsever U Cevher, 2016)
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Recovery from sketch: intuition

recall
Y = XΩ ∈ Rn×k and W = ΨX ∈ R`×m

I if Q is an orthonormal basis for R(X ), then

X = QQ∗X

I if QR = XΩ, then Q is (approximately) a basis for R(X )

I and if W = ΨX , we can estimate

W = ΨX

≈ ΨQQ∗X

(ΨQ)†W ≈ Q∗X

I hence we may reconstruct X as

X ≈ QQ∗X ≈ Q(ΨQ)†W

21 / 30



SketchyCGM

Algorithm 5 SketchyCGM for the model problem (CMOP)

Input: Problem data; suboptimality ε; target rank r
Output: Rank-r approximate solution X̂ = UΣV ∗

1 function SketchyCGM
2 Sketch.Init(m, n, r)
3 z ← 0
4 for t ← 0, 1, . . . do
5 (u, v)← MaxSingVec(−A∗(∇f (z)))
6 h← A(−αuv∗)
7 if 〈z − h, ∇f (z)〉 ≤ ε then break for

8 η ← 2/(t + 2)
9 z ← (1− η)z + ηh

10 Sketch.CGMUpdate(−αu, v , η)

11 (U,Σ,V )← Sketch.Reconstruct( )
12 return (U,Σ,V )
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Guarantees

Suppose

I X
(t)
cgm is tth CGM iterate

I bX (t)
cgmcr is best rank r approximation to CGM solution

I X̂ (t) is SketchyCGM reconstruction after t iterations

Theorem (Convergence to CGM solution)

After t iterations, the SketchyCGM reconstruction satisfies

E ‖X̂ (t) − X (t)
cgm‖F ≤ 2 ‖bX (t)

cgmcr − X (t)
cgm‖F .

If in addition X ? = limt→∞ X
(t)
cgm has rank r , then RHS → 0!

(Tropp Yurtsever U Cevher, 2016)
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Convergence when rank(Xcgm) ≤ r

X0

Xcgm = X̂
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Convergence when rank(Xcgm) > r

X0

Xcgm

[Xcgm]r
X̂
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Guarantees (II)

Theorem (Convergence rate)

Fix κ > 0 and ν ≥ 1. Suppose the (unique) solution X?
of (CMOP) has rank(X?) ≤ r and

f (AX )− f (AX?) ≥ κ ‖X − X?‖νF for all ‖X‖S1
≤ α. (1)

Then we have the error bound

E ‖X̂t − X?‖F ≤ 6

(
2κ−1C

t + 2

)1/ν

for t = 0, 1, 2, . . .

where C is the curvature constant (Eqn. (3), Jaggi 2013) of the
problem (CMOP).
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Application: Phase retrieval

I image with n pixels x\ ∈ Cn

I acquire noisy measurements bi = |〈ai , x\〉|2 + ωi

I recover image by solving

minimize f (AX ; b)
subject to trX ≤ α

X � 0.
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SketchyCGM is scalable

Signal length (n)
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(b) Convergence for
n = 8 · 106.

PGM = proximal gradient (via TFOCS (Becker Candès Grant, 2011))
AT = accelerated PGM (Auslander Teboulle, 2006) (via TFOCS),

CGM = conditional gradient method (Jaggi, 2013)
ThinCGM = CGM with thin SVD updates (Yurtsever Hsieh Cevher, 2015)

SketchyCGM = ours, using r = 1
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SketchyCGM is reliable

Fourier ptychography:

I imaging blood cells with A = subsampled FFT
I n = 25, 600, d = 185, 600
I rank(X?) ≈ 5 (empirically)

(a) SketchyCGM (b) Burer–Monteiro (c) Wirtinger Flow

I brightness indicates phase of pixel (thickness of sample)
I red boxes mark malaria parasites in blood cells
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Conclusion

SketchyCGM offers a proof-of-concept convex method with
optimal storage for low rank matrix optimization using two
new ideas:

I Drive the algorithm using a smaller (dual) variable.

I Sketch and recover the decision variable.
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