
Sketchy Decisions:
Convex Low-Rank Matrix Optimization with

Optimal Storage

Madeleine Udell

Operations Research and Information Engineering
Cornell University

Based on joint work with
Alp Yurtsever (EPFL), Volkan Cevher (EPFL),

and Joel Tropp (Caltech)

LCCC, June 15 2017
1 / 30

Desiderata

Suppose that the solution to a convex optimization problem has
a compact representation.

Problem data: O(n)

↓

Working memory: O(???)

↓
Solution: O(n)

Can we develop algorithms that provably solve the problem
using storage bounded by the size of the problem data and the
size of the solution?

2 / 30

Model problem: low rank matrix optimization

consider a convex problem with decision variable X ∈ Rm×n

compact matrix optimization problem:

minimize f (AX)
subject to ‖X‖S1

≤ α (CMOP)

I A : Rm×n → Rd

I f : Rd → R convex and smooth

I ‖X‖S1
is Schatten-1 norm: sum of singular values

assume

I compact specification: problem data use O(n) storage

I compact solution: rankX? = r constant

Note: Same ideas work for X � 0

3 / 30

Model problem: low rank matrix optimization

consider a convex problem with decision variable X ∈ Rm×n

compact matrix optimization problem:

minimize f (AX)
subject to ‖X‖S1

≤ α (CMOP)

I A : Rm×n → Rd

I f : Rd → R convex and smooth

I ‖X‖S1
is Schatten-1 norm: sum of singular values

assume

I compact specification: problem data use O(n) storage

I compact solution: rankX? = r constant

Note: Same ideas work for X � 0

3 / 30

Model problem: low rank matrix optimization

consider a convex problem with decision variable X ∈ Rm×n

compact matrix optimization problem:

minimize f (AX)
subject to ‖X‖S1

≤ α (CMOP)

I A : Rm×n → Rd

I f : Rd → R convex and smooth

I ‖X‖S1
is Schatten-1 norm: sum of singular values

assume

I compact specification: problem data use O(n) storage

I compact solution: rankX? = r constant

Note: Same ideas work for X � 0
3 / 30

Are desiderata achievable?

minimize f (AX)
subject to ‖X‖S1

≤ α

CMOP, using any first order method:

Problem data: O(n)

↓
Working memory: O(n2)

↓
Solution: O(n)

4 / 30

Are desiderata achievable?

CMOP, using ???:

Problem data: O(n)

↓

Working memory: O(???)

↓
Solution: O(n)

4 / 30

Application: matrix completion

find X matching M on observed entries

minimize
∑

(i ,j)∈Ω(Xij −Mij)
2

subject to ‖X‖S1
≤ α

I m = rows, n = columns of matrix to complete

I d = |Ω| number of observations

I A selects observed entries Xij , (i , j) ∈ Ω

I f (AX) = ‖AX −AM‖2

compact if d = O(n) observations and rank(X ?) constant

Theorem: ε-rank of M grows as log(m + n) if rows and cols iid
(under some technical conditions) (Udell and Townsend, 2017)

5 / 30

Application: matrix completion

find X matching M on observed entries

minimize
∑

(i ,j)∈Ω(Xij −Mij)
2

subject to ‖X‖S1
≤ α

I m = rows, n = columns of matrix to complete

I d = |Ω| number of observations

I A selects observed entries Xij , (i , j) ∈ Ω

I f (AX) = ‖AX −AM‖2

compact if d = O(n) observations and rank(X ?) constant

Theorem: ε-rank of M grows as log(m + n) if rows and cols iid
(under some technical conditions) (Udell and Townsend, 2017)

5 / 30

Application: Phase retrieval

I image with n pixels x\ ∈ Cn

I acquire noisy nonlinear measurements bi = |〈ai , x\〉|2 + ωi

I relax: if X = x\x
∗
\ , then

|〈ai , x\〉|2 = x\a
∗
i aix

∗
\ = tr(a∗i aix

∗
\ x\) = tr(a∗i aiX)

I recover image by solving

minimize f (AX ; b)
subject to trX ≤ α

X � 0.

compact if d = O(n) observations and rank(X ?) constant 6 / 30

Optimal Storage

What kind of storage bounds can we hope for?

I Assume black-box implementation of

A(uv∗) u∗(A∗z) (A∗z)v

where u ∈ Rm, v ∈ Rn, and z ∈ Rd

I Need Ω(m + n + d) storage to apply linear map

I Need Θ(r(m+ n)) storage for a rank-r approximate solution

Definition. An algorithm for the model problem
has optimal storage if its working storage is

Θ(d + r(m + n)).

7 / 30

Goal: optimal storage

We can specify the problem using O(n)� mn units of storage.

Can we solve the problem using only O(n) units of
storage?

If we write down X , we’ve already failed.

8 / 30

Goal: optimal storage

We can specify the problem using O(n)� mn units of storage.

Can we solve the problem using only O(n) units of
storage?

If we write down X , we’ve already failed.

8 / 30

A brief biased history of matrix optimization

I 1990s: Interior-point methods
I Storage cost Θ((m + n)4) for Hessian

I 2000s: Convex first-order methods
I (Accelerated) proximal gradient and others
I Store matrix variable Θ(mn)

(Interior-point: Nemirovski & Nesterov 1994; . . . ; First-order: Rockafellar

1976; Auslender & Teboulle 2006; . . .)

9 / 30

A brief biased history of matrix optimization

I 2008–Present: Storage-efficient convex first-order
methods

I Conditional gradient method (CGM) and extensions
I Store matrix in low-rank form O(t(m + n)) after t iterations
I Requires storage Θ(mn) for t ≥ min(m, n)

I 2003–Present: Nonconvex heuristics
I Burer–Monteiro factorization idea + various opt algorithms
I Store low-rank matrix factors Θ(r(m + n))
I For guaranteed solution, need unrealistic + unverifiable

statistical assumptions

(CGM: Frank & Wolfe 1956; Levitin & Poljak 1967; Hazan 2008; Clarkson

2010; Jaggi 2013; . . . ; Heuristics: Burer & Monteiro 2003; Keshavan et

al. 2009; Jain et al. 2012; Bhojanapalli et al. 2015; Candès et al. 2014;

Boumal et al. 2015; . . .)
10 / 30

The dilemma

I convex methods: slow memory hogs with guarantees

I nonconvex methods: fast, lightweight, but brittle

low memory or guaranteed convergence
. . . but not both?

11 / 30

The dilemma

I convex methods: slow memory hogs with guarantees

I nonconvex methods: fast, lightweight, but brittle

low memory or guaranteed convergence
. . . but not both?

11 / 30

Conditional Gradient Method

‖X‖S1
≤ α

−∇g(X t)

X t

Ht = argmax
‖X‖S1

≤1
〈X , −∇g(X t)〉

X t+1

minimize f (AX) = g(X)
subject to ‖X‖S1

≤ α

12 / 30

Conditional Gradient Method

minimize f (AX)
subject to ‖X‖S1

≤ α

CGM. set X 0 = 0. for t = 0, 1, . . .

I compute G t = A∗∇f (AX t)

I set search direction

Ht = argmax
‖X‖S1

≤α
〈X ,−G t〉

I set stepsize ηt = 2/(t + 2)

I update X t+1 = (1− ηt)X t + ηtHt

13 / 30

Conditional gradient method (CGM)

features:

I relies on efficient linear optimization oracle to compute

Ht = argmax
‖X‖S1

≤α
〈X ,−G t〉

I bound on suboptimality follows from subgradient inequality

f (AX t)− f (AX ?) ≤ 〈X t − X ?,G t〉
≤ 〈X t − X ?,A∗∇f (AX)〉
≤ 〈AX t −AX ?,∇f (AX)〉

to provide stopping condition

I faster variants: linesearch, away steps, . . .
14 / 30

Linear optimization oracle for MOP

compute search direction

argmax
‖X‖S1

≤α
〈X ,−G 〉

I solution given by maximum singular vector of −G :

−G =
n∑

i=1

σiuiv
∗
i =⇒ X = αu1v

∗
1

I use Lanczos method: only need to apply G and G ∗

15 / 30

Linear optimization oracle for MOP

compute search direction

argmax
‖X‖S1

≤α
〈X ,−G 〉

I solution given by maximum singular vector of −G :

−G =
n∑

i=1

σiuiv
∗
i =⇒ X = αu1v

∗
1

I use Lanczos method: only need to apply G and G ∗

15 / 30

Conditional gradient descent

Algorithm 1 CGM for the model problem (CMOP)

Input: Problem data for (CMOP); suboptimality ε
Output: Solution X?

1 function CGM
2 X ← 0
3 for t ← 0, 1, . . . do
4 (u, v)← MaxSingVec(−A∗(∇f (AX)))
5 H ← −α uv∗

6 if 〈AX −AH, ∇f (AX)〉 ≤ ε then break for

7 η ← 2/(t + 2)
8 X ← (1− η)X + ηH

9 return X

16 / 30

Two crucial ideas

To solve the problem using optimal storage:

I Use the low-dimensional “dual” variable

zt = AXt ∈ Rd

to drive the iteration.

I Recover solution from small (randomized) sketch.

Never write down X until it has converged to low rank.

17 / 30

Two crucial ideas

To solve the problem using optimal storage:

I Use the low-dimensional “dual” variable

zt = AXt ∈ Rd

to drive the iteration.

I Recover solution from small (randomized) sketch.

Never write down X until it has converged to low rank.

17 / 30

Conditional gradient descent

Algorithm 2 CGM for the model problem (CMOP)

Input: Problem data for (CMOP); suboptimality ε
Output: Solution X?

1 function CGM
2 X ← 0
3 for t ← 0, 1, . . . do
4 (u, v)← MaxSingVec(−A∗(∇f (AX)))
5 H ← −α uv∗

6 if 〈AX −AH, ∇f (AX)〉 ≤ ε then break for

7 η ← 2/(t + 2)
8 X ← (1− η)X + ηH

9 return X

17 / 30

Conditional gradient descent

Introduce “dual variable” z = AX ∈ Rd ; eliminate X .

Algorithm 3 Dual CGM for the model problem (CMOP)

Input: Problem data for (CMOP); suboptimality ε
Output: Solution X?

1 function dualCGM
2 z ← 0
3 for t ← 0, 1, . . . do
4 (u, v)← MaxSingVec(−A∗(∇f (z)))
5 h← A(−αuv∗)
6 if 〈z − h, ∇f (z)〉 ≤ ε then break for

7 η ← 2/(t + 2)
8 z ← (1− η)z + ηh

we’ve solved the problem. . . but where’s the solution?

17 / 30

Conditional gradient descent

Introduce “dual variable” z = AX ∈ Rd ; eliminate X .

Algorithm 4 Dual CGM for the model problem (CMOP)

Input: Problem data for (CMOP); suboptimality ε
Output: Solution X?

1 function dualCGM
2 z ← 0
3 for t ← 0, 1, . . . do
4 (u, v)← MaxSingVec(−A∗(∇f (z)))
5 h← A(−αuv∗)
6 if 〈z − h, ∇f (z)〉 ≤ ε then break for

7 η ← 2/(t + 2)
8 z ← (1− η)z + ηh

we’ve solved the problem. . . but where’s the solution?
17 / 30

Two crucial ideas

1. Use the low-dimensional “dual” variable

zt = AXt ∈ Rd

to drive the iteration.

2. Recover solution from small (randomized) sketch.

17 / 30

How to catch a low rank matrix

if X̂ has the same rank as X ?,
and X̂ acts like X ? (on its range and co-range),

then X̂ is X ?

I see a series of additive updates

I remember how the matrix acts

I reconstruct a low rank matrix that acts like X ?

18 / 30

How to catch a low rank matrix

if X̂ has the same rank as X ?,
and X̂ acts like X ? (on its range and co-range),

then X̂ is X ?

I see a series of additive updates

I remember how the matrix acts

I reconstruct a low rank matrix that acts like X ?

18 / 30

Single-pass randomized sketch

I Draw and fix two independent standard normal matrices

Ω ∈ Rn×k and Ψ ∈ R`×m

with k = 2r + 1, ` = 4r + 2.

I The sketch consists of two matrices that capture the range
and co-range of X :

Y = XΩ ∈ Rn×k and W = ΨX ∈ R`×m

I Rank-1 updates to X can be performed on sketch:

X ′ = β1X + β2uv
∗

⇓
Y ′ = β1Y + β2uv

∗Ω and W ′ = β1W + β2Ψuv∗

I Both the storage cost for the sketch and the arithmetic cost
of an update are O(r(m + n)).

19 / 30

Single-pass randomized sketch

I Draw and fix two independent standard normal matrices

Ω ∈ Rn×k and Ψ ∈ R`×m

with k = 2r + 1, ` = 4r + 2.
I The sketch consists of two matrices that capture the range

and co-range of X :

Y = XΩ ∈ Rn×k and W = ΨX ∈ R`×m

I Rank-1 updates to X can be performed on sketch:

X ′ = β1X + β2uv
∗

⇓
Y ′ = β1Y + β2uv

∗Ω and W ′ = β1W + β2Ψuv∗

I Both the storage cost for the sketch and the arithmetic cost
of an update are O(r(m + n)).

19 / 30

Single-pass randomized sketch

I Draw and fix two independent standard normal matrices

Ω ∈ Rn×k and Ψ ∈ R`×m

with k = 2r + 1, ` = 4r + 2.
I The sketch consists of two matrices that capture the range

and co-range of X :

Y = XΩ ∈ Rn×k and W = ΨX ∈ R`×m

I Rank-1 updates to X can be performed on sketch:

X ′ = β1X + β2uv
∗

⇓
Y ′ = β1Y + β2uv

∗Ω and W ′ = β1W + β2Ψuv∗

I Both the storage cost for the sketch and the arithmetic cost
of an update are O(r(m + n)).

19 / 30

Single-pass randomized sketch

I Draw and fix two independent standard normal matrices

Ω ∈ Rn×k and Ψ ∈ R`×m

with k = 2r + 1, ` = 4r + 2.
I The sketch consists of two matrices that capture the range

and co-range of X :

Y = XΩ ∈ Rn×k and W = ΨX ∈ R`×m

I Rank-1 updates to X can be performed on sketch:

X ′ = β1X + β2uv
∗

⇓
Y ′ = β1Y + β2uv

∗Ω and W ′ = β1W + β2Ψuv∗

I Both the storage cost for the sketch and the arithmetic cost
of an update are O(r(m + n)).

19 / 30

Recovery from sketch

To recover rank-r approximation X̂ from the sketch, compute

1. Y = QR (tall-skinny QR)

2. B = (ΨQ)†W (small QR + backsub)

3. X̂ = Q[B]r (tall-skinny SVD)

Theorem (Reconstruction)

Fix a target rank r . Let X be a matrix, and let (Y ,W) be a
sketch of X . The reconstruction procedure above yields a rank-r
matrix X̂ with

E ‖X − X̂‖F ≤ 2 ‖X − [X]r‖F .

Similar bounds hold with high probability.

(Tropp Yurtsever U Cevher, 2016)

20 / 30

Recovery from sketch

To recover rank-r approximation X̂ from the sketch, compute

1. Y = QR (tall-skinny QR)

2. B = (ΨQ)†W (small QR + backsub)

3. X̂ = Q[B]r (tall-skinny SVD)

Theorem (Reconstruction)

Fix a target rank r . Let X be a matrix, and let (Y ,W) be a
sketch of X . The reconstruction procedure above yields a rank-r
matrix X̂ with

E ‖X − X̂‖F ≤ 2 ‖X − [X]r‖F .

Similar bounds hold with high probability.

(Tropp Yurtsever U Cevher, 2016)
20 / 30

Recovery from sketch: intuition

recall
Y = XΩ ∈ Rn×k and W = ΨX ∈ R`×m

I if Q is an orthonormal basis for R(X), then

X = QQ∗X

I if QR = XΩ, then Q is (approximately) a basis for R(X)

I and if W = ΨX , we can estimate

W = ΨX

≈ ΨQQ∗X

(ΨQ)†W ≈ Q∗X

I hence we may reconstruct X as

X ≈ QQ∗X ≈ Q(ΨQ)†W

21 / 30

SketchyCGM

Algorithm 5 SketchyCGM for the model problem (CMOP)

Input: Problem data; suboptimality ε; target rank r
Output: Rank-r approximate solution X̂ = UΣV ∗

1 function SketchyCGM
2 Sketch.Init(m, n, r)
3 z ← 0
4 for t ← 0, 1, . . . do
5 (u, v)← MaxSingVec(−A∗(∇f (z)))
6 h← A(−αuv∗)
7 if 〈z − h, ∇f (z)〉 ≤ ε then break for

8 η ← 2/(t + 2)
9 z ← (1− η)z + ηh

10 Sketch.CGMUpdate(−αu, v , η)

11 (U,Σ,V)← Sketch.Reconstruct()
12 return (U,Σ,V)

22 / 30

Guarantees

Suppose

I X
(t)
cgm is tth CGM iterate

I bX (t)
cgmcr is best rank r approximation to CGM solution

I X̂ (t) is SketchyCGM reconstruction after t iterations

Theorem (Convergence to CGM solution)

After t iterations, the SketchyCGM reconstruction satisfies

E ‖X̂ (t) − X (t)
cgm‖F ≤ 2 ‖bX (t)

cgmcr − X (t)
cgm‖F .

If in addition X ? = limt→∞ X
(t)
cgm has rank r , then RHS → 0!

(Tropp Yurtsever U Cevher, 2016)

23 / 30

Convergence when rank(Xcgm) ≤ r

X0

Xcgm = X̂

24 / 30

Convergence when rank(Xcgm) > r

X0

Xcgm

[Xcgm]r
X̂

25 / 30

Guarantees (II)

Theorem (Convergence rate)

Fix κ > 0 and ν ≥ 1. Suppose the (unique) solution X?
of (CMOP) has rank(X?) ≤ r and

f (AX)− f (AX?) ≥ κ ‖X − X?‖νF for all ‖X‖S1
≤ α. (1)

Then we have the error bound

E ‖X̂t − X?‖F ≤ 6

(
2κ−1C

t + 2

)1/ν

for t = 0, 1, 2, . . .

where C is the curvature constant (Eqn. (3), Jaggi 2013) of the
problem (CMOP).

26 / 30

Application: Phase retrieval

I image with n pixels x\ ∈ Cn

I acquire noisy measurements bi = |〈ai , x\〉|2 + ωi

I recover image by solving

minimize f (AX ; b)
subject to trX ≤ α

X � 0.

27 / 30

SketchyCGM is scalable

Signal length (n)
101 102 103 104 105 106

M
em

o
ry

(b
y
te
s)

104

106

108

1010

AT
PGM
CGM
ThinCGM
SketchyCGM

(a) Memory usage for five algorithms

iterations
100 101 102

R
el
a
ti
ve

er
ro
r
in

so
lu
ti
o
n

10-1

100

time (s)
103 104

10-1

100

(b) Convergence for
n = 8 · 106.

PGM = proximal gradient (via TFOCS (Becker Candès Grant, 2011))
AT = accelerated PGM (Auslander Teboulle, 2006) (via TFOCS),

CGM = conditional gradient method (Jaggi, 2013)
ThinCGM = CGM with thin SVD updates (Yurtsever Hsieh Cevher, 2015)

SketchyCGM = ours, using r = 1

28 / 30

SketchyCGM is reliable

Fourier ptychography:

I imaging blood cells with A = subsampled FFT
I n = 25, 600, d = 185, 600
I rank(X?) ≈ 5 (empirically)

(a) SketchyCGM (b) Burer–Monteiro (c) Wirtinger Flow

I brightness indicates phase of pixel (thickness of sample)
I red boxes mark malaria parasites in blood cells

29 / 30

Conclusion

SketchyCGM offers a proof-of-concept convex method with
optimal storage for low rank matrix optimization using two
new ideas:

I Drive the algorithm using a smaller (dual) variable.

I Sketch and recover the decision variable.

References:

I J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher.
Randomized single-view algorithms for low-rank matrix
reconstruction. SIMAX (to appear).

I A. Yurtsever, M. Udell, J. A. Tropp, and V. Cevher.
Sketchy Decisions: Convex Optimization with Optimal
Storage. AISTATS 2017.

30 / 30

	Motivation
	CGM
	Sketch

