Sparsity and asynchrony in distributed optimization:
models and convergence results

Arda Aytekin, Hamid Reza Feyzmahdavian, Sarit Khirirat and Mikael Johansson
KTH - Royal Institute of Technology

Multi-core computing

Multiple computation units (cores) able to address the same memory space

Core 1§ Core 2§ Core 3 J§ Core 4
]] %] %]
L2 L2 L2 L2

Main memory

Shared memory

Many uses in optimization

e parallelize linear algebra, evaluate gradients in parallel, ...

Critical to keep cores busy, respect memory hierarchies & bus limitations

M. Johansson (KTH) LCC Workshop, June 2017

Achiving scalability in a post-Moore era

Single-thread performance increases are long gone

107 F : Transistors (thousands)
10 : Single-thread
H i i ¢ performance
104 b e B RTCIINE ST - (SpecINT)
103 Frequency (MHz)
102L o i e e <. Typical power (Watts)
NSLER - D sV > o 1 No. cores
oL . i
10 %i i i i i i i
1975 1980 1985 1990 1995 2000 2005 2010 2015
Key is now more processing elements (threads, cores, sockets, . ..)

M. Johansson (KTH) LCC Workshop, June 2017

Dealing with the data deluge

Increasingly often impossible/impractical to move data to central location

Geographically dispersed data, heterogenous compute resources

M. Johansson (KTH) LCC Workshop, June 2017

Dealing with the data deluge

Natural with master-worker solutions:
e master maintains decision vector, queries workers in parallel

e workers return delayed gradients of their data loss

V& ‘vy
Vi (ka\ %:2

Q: What is the impact of time-varying delays on the algorithm convergence?

M. Johansson (KTH) LCC Workshop, June 2017

Contents

Motivation

Theory for asynchronous and lock-free computations

Exploiting sparsity to speed up convergence
Conclusions

M. Johansson (KTH) LCC Workshop, June 2017

Limits of scalability

Speed-ups limited by fraction of code a which is parallelizable.

9 Speedup 50 Scaled speedup
8 50
7
6 40
& L
=, 30
g g
-~ —
4 20
3
10
2
1 0
14 8 16 32 64 14 8 16 32 64
Number of processors Number of processors

Idealized behaviors, further impaired by
e synchronization and lock management, communication, load imbalance

(challenges on multi-cores and clouds are surprisingly similar)

M. Johansson (KTH) LCC Workshop, June 2017

Lock-free implementations: consistent and inconsistent read

Shared Consistent Inconsistent
memory read read

B = write [l =read

M. Johansson (KTH) LCC Workshop, June 2017

Time-delay models of asynchronism Lyapunov analysis of synchronous algorithms

Consistent read of vector x into variable z at time ¢: Convergence rates often derived using standard results for sequences.

e z(t) has existed in shared memory at some time '
Example. Gradient method with strongly convex objective satisfies
z(t) = x(t — d(t))
Vi1 < pVie +r
homogeneous time delay for all components of z
which allows to conclude that V}, < p¥Vj + e where e = 7/(1 — p).

Inconsistent read of z into z at time ¢:
Example. Gradient method for Lipschitz gradients analyzed by establishing

e complete vector z(t) has never existed in memory, only its components

Vir: < Vi — V2
zi(t) = xi(t — d;(t)) k1 < Vi —aVy

which implies that V}, < V5 /(1 + akVp).
heterogeneous delays

We will assume that information delays are bounded, arbitrarily time-varying.

M. Johansson (KTH) LCC Workshop, June 2017 / M. Johansson (KTH) LCC Workshop, June 2017 10 / 38

Lyapunov analysis of asynchronous algorithms Convergence results for delayed sequences

Asynchronous algorithms result in sequences on the form Lemma 1. Let {V}} be a sequence of real numbers satisfying
Vi1 < f(Vi, Vie—a,,) + ex Vig1 <pVie+q max Vj+r
k—dp<j<k

Much harder to analyze, much less theoretical support. for some non-negative numbers p, g and 7. If p+ ¢ < 1 and

X X 0 < dlc < dmax
Coming up: two sequence lemmas and an application

— allow for simple and uniform treatment of asynchronous algorithms for all k, then

— balance simplicity, applicability and power; support analytical results Vi < pkv(o) +e

where p = (p + ¢)t/(1Fdma) and e = r/(1 — p — q).

[Feyzmahdavian, Aytekin and Johansson, 2014]

M. Johansson (KTH) LCC Workshop, June 2017 M. Johansson (KTH) LCC Workshop, June 2017 12 /38

Convergence results for delayed sequences Problem formulation

Lemma 2. Assume that the non-negative sequences {V}} and {wy} satisfy

k minimize 37", fi(z) + h(z)
z€ER
Vg1 < pVip —bwg +a E wy (1) ©
Jj=k—dmax

. e m samples, decision vector z € R"
for some real numbers p € (0,1) and a,b > 0, and some integer dyax > 0. pies, <

Assume also that wy = 0 for k < 0, and that e fi(x) loss of sample i for decision x; h(x) is regularizer
dmax 1 .
a_1-pinet <b Assumptions:
— dimax - :
L=p p e each f; is convex, differentiable with Lipschitz continuous gradient
Then, Vi, < pFV; for all k > 0. e 3. fi is strongly convex

e h is proper convex (but may be non-smooth, extended-real valued)

Examples: ¢;-regularized least-squares, constrained logistic regression, ...

[Aytekin, Feyzmahdavian, Johansson, 2016]

M. Johansson (KTH) LCC Workshop, June 2017 M. Johansson (KTH) LCC Workshop, June 2017 14 / 38

The proximal incremental aggregate gradient algorithm Related work

Idea: Blatt et al. (2007):
e compute (incremental) gradient with respect to a subset of data e convex quadratic loss, no regularizer, synchronous
e maintain (aggregate of) most recent gradient for each data point e rate of convergence, but no explicit step-size or convegence factors

e update = using prox-step w.r.t aggregate gradient and regularizer
Tsen and Yun (2014)

m
e convex loss with Lipschitz gradient, simple regularizer, asynchronous
g6 =>_ Vi (viar) gracien S y
P e rate of convergence, but no explicit step-size or convegence factors

— H 1 2 h
The1 = argming (g, @ — k) + o o = zxlz +hl) . Giirbiizbalaban et al. (2015)
e strongly convex loss with Lipschitz gradient, no regularizer, asynch.

e explicit step-sizes and convergence factors

Motivation: fewer calculations per iteration, faster wall-clock convergence
(cf. SAG (Le Roux et al. 2012), IAG (Giirbiizbalaban et al. 2015), ...)

and more (e.g. stochastic average gradient, ...)

M. Johansson (KTH) LCC Workshop, June 2017 M. Johansson (KTH) LCC Workshop, June 2017 16 / 38

Proximal incremental aggregate gradient on parameter server Proximal incremental aggregate gradient on parameter server

Each worker w:
e receives new iterate from master, computes gradients of local data loss,

9k = in,- (m’“—di> @ Z Vfi(zr)

i=1
1€Ly

. 1
s = argmin{ (g~ 0) + gole B4 h@) ()
v e pushes this quantity to master (arrives with total delay d}!)

. . Master:
Natural parameter-server implementation:

e Data distributed over multiple workers ({1,...,m} =7, UZ,,...)
e Master node maintains iterate =, queries nodes for gradients i
gk =Y Viiwia)

e maintains aggregate gradient

i=1

Time-varying, heterogeneous delays di, between master and worker i.
e updates iterate via prox-step, pushes xj41 to workers

M. Johansson (KTH) LCC Workshop, June 2017

M. Johansson (KTH) LCC Workshop, June 2017

PIAG on the parameter server Main result

Theorem. Assume that each Vf; is L;-Lipschitz continuous, >", f; is
p-strongly convex, and dj, < dmax for all i. If the step-size a satisfies:

et 1+ g — 1
<

- 1

«)

where L = 25:1 L,,, then the iterates generated by (2), (3) satisfy:

k
1
o =213 < (g) oo = 2B

V&)Vy
Vf1(ka %:2

M. Johansson (KTH) LCC Workshop, June 2017

M. Johansson (KTH) LCC Workshop, June 2017

Discussion Proof sketch
Linear convergence, even in presence of proximal term. Lemma 2. Assume that the non-negative sequences {V}} and {wy} satisfy
In absence of asynchronism, can pick o = 1/L to guarantee k
Vit < aVy —bw, + ¢ Z wj ,
j=k—dmax

k
L
oy —a* |3 < { 7] llzo — "3
2 1’ 2 .
T h for some real numbers a € (0,1) and b, ¢ > 0, and some integer dyax > 0.

Assume also that wy = 0 for k < 0, and that the following holds:

Graceful slowdown guaranteed, as dy,ax increases

¢ 1 — gimaxt1

<b.
pzl_# 1—a admax -
(1 + dmax)2
Then, Vi, < a*V} for all k > 0.
(similar to best known estimates for h = 0)
Sharper bounds, shorter and simpler proof than related work.
M. Johansson (KTH) LCC Workshop, June 2017 M. Johansson (KTH) LCC Workshop, June 2017 22 /38
Proof sketch Parameter-server implementation on EC2
Convexity and Lipschitz continuity of gradients imply Binary classification via ¢1-regularized logistic regression on rcvi-v2
) 2 e 2 2
Zfi(xk+1) < Zfz(x) + (9K, Thy1 — x) + Z ?Z”xk_l,_]_ —Tp_aillz Vo minimize — Z (log (1 +exp (— bi<ai7$>)) + 2||$||2> + Al
i=1 i=1 i=1 i=1
By strong convexity of >, f; + h, optimality conditions, and Jensen's ineq Parameter-server implementation of (2), (3) on Amazon EC2:
e 3 compute nodes (c4.2xlarge: 8 CPUs, 15 GB RAM, each),
|21 — 2*3 < llzk —*||3 — llzre1 — zrl5+ o one in Ireland (EU),
poc+1 poe+1 o one in North Virginia (US),
(dmax + 1)L k) o one in Tokyo (AP),
T pa+ 1 Z 1 = ;2 e 2 workers in each node (a total of 6 workers)

Jj=k—dmax
e Master node on computer at KTH in Stockholm, Sweden.

Now our Lemma applies and allows to conclude linear rate of convergence.

M. Johansson (KTH) LCC Workshop, June 2017 M. Johansson (KTH) LCC Workshop, June 2017 24 /38

Parameter-server implementation on EC2 Parameter-server implementation on EC2

Amazon sent us the bill for the figure. ..

10
107
10
10°
107!

Computing: $ 80
Communication: $ 20

2
2

Computing far from free, communication surprisingly expensive.

[E

1072
10-3 : : : Communication also impairs performance — important to reduce!
—4 | — éound ‘ :
10 — Trace E
=5 T T 1 - C}I ‘(7) C}J CJI, -
0 12500 25000 37500 50000 3 3 3 g 3
k Worker

M. Johansson (KTH) LCC Workshop, June 2017 M. Johansson (KTH) LCC Workshop, June 2017

Contents Data sparsity implies dimensionality reduction
o Motivation Standard definition: many elements are zero (more than 66%)
e Theory for asynchronous and lock-free computations e common feature of many large-scale data sets (e.g. in svmlib)

Exploiting sparsity to speed up convergence T
P £ sparstty P P g Standard implication: dimensionality reduction

Conclusions .
e can store data more efficiently (row, col, val)

e approximate low-rank matrix representations

We will exploit another implication of sparsity. . .

M. Johansson (KTH) LCC Workshop, June 2017 27 / 38 M. Johansson (KTH) LCC Workshop, June 2017 28 / 38

Data sparsity implies decoupling

Example. Draw rows from matrix A € R™*™ with probability 1/m.
Eai, a;) < Ellai|[3

Inner product much smaller when A is sparse (can even be zero)!

How can we quantify and exploit this property?

M. Johansson (KTH) LCC Workshop, June 2017

Graphical representations of sparsity

Features

|

Samples
Samples
Features
Samples

Key quantities:
e maximum feature degree A, = max; [{¢ : j € supp(a;)}|

e maximum or average conflict degree A% = > ; H{supp(a;) Nsupp(a;) # 0

With Apax = max; A%, and A, =", AL/m, it holds that

1+ A, 1 Aax
Bla,a;) < min § (/1520 15 B J20 G g2 oma 3

M. Johansson (KTH) LCC Workshop, June 2017

31/38

Graphical representations of sparsity

Features

|

Samples

Several graphical representations of sparsity
e bipartite sample-feature graph (edges if sample contains feature)
e sample conflict graph (edges if samples overlap in some feature)

Samples

(cf. Mania et al., arXiv:1507.06970)

Aim: use graphs to compute measure ¢ such that

M. Johansson (KTH)

E(a;,a;) < oB[ai3

LCC Workshop, June 2017

How sparse is real-world data?

Features

Samples

30/ 38

Sparsity measure o on data from libsvm (recall: E{a;,a;) < cE|a;||3)

M. Johansson (KTH)

Data set name | o
kddb.t 0.255
wida 0.61
rcvl 0.627
protein.t 0.669
news20 0.727

LCC Workshop, June 2017

32/38

How can we use this sparsity in first-order methods? Mini-batch optimization under data sparsity

Many machine-learning problem are on the form Assume that each f; is L-Lipschitz continuous, total loss p-strongly convex.
Form mini-batch by sampling with replacement using probabilities 1/m.
minimize S fi() = elalz — b))
xeR™

Mini-batch gradient descent generate iterates {x(¢)} which satisfy
with f;(z) = ¢(alx — b;). Gradients have same sparsity pattern as data. NP o
() — 2™z < p'[|x(0) — 27|z + e

We will focus on mini-batch gradient descent:

with
wt+1)=2(t)-T > %Vfi(x) _, M 0
ies(t) P= "1 (M —1)o2mL
, . . 1 o2
where S(t) is a mini-batch of size M, drawn from {1,...,m}. e= L ; IV filz™)|l3

Recovers classical results in absence of sparsity, improvements when o small.

M. Johansson (KTH) LCC Workshop, June 2017 33 /38 M. Johansson (KTH) LCC Workshop, June 2017 34 /38

Application to binary classification Many extensions

Binary classification on data set with m = 150000, n = 3000 and A,. = 400 Can allow different Lipschitz constants, bias-convergence trade-off params.

1900 N E— Can derive similar results in absence of strong convexity.

— e 1

Tann s ® Can deal with mini-batch proximal minimization for problems on the form
1000 L.) m

minimize S, fi(x) + g(o)
zER™
Possible to combine with stochastic variance reduction (SVRG, etc.)
500 -
0 0 1 0‘00 20‘00 3(:;00 4000 5000 6(:;00

computation time [sec]
Significant speed-ups by exploiting sparsity!

M. Johansson (KTH) LCC Workshop, June 2017 / M. Johansson (KTH) LCC Workshop, June 2017 36 / 38

Pre-processing effort

Feature-degree practically for free.

Conflict graph very large, costly to form and manipulate
e some data set in libsvm takes about a day to analyze on standard PC

e tailored GPU code runs in more than 10x faster

Still, in practice, seems reasonable to focus on feature degree.

M. Johansson (KTH) LCC Workshop, June 2017

Conclusions

Scalability in a big-data, post-Moore world:
e parallel and distributed optimization

e exploiting structure, dealing with asynchronism, respecting architectures

Theory from lock-free and asynchronous computation
e two simple, yet powerful, sequence lemmas

e PIAG: convergence guarantees + cloud implementation
Exploiting data sparsity

e Graphical measures of data sparsity, evaluation on svmlib data

e Significant convergence guarantee improvements for mini-batch GD

M. Johansson (KTH) LCC Workshop, June 2017

38 /38

