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Multi-core computing

Multiple computation units (cores) able to address the same memory space
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Main memory

Shared memory

Many uses in optimization

e parallelize linear algebra, evaluate gradients in parallel, ...

Critical to keep cores busy, respect memory hierarchies & bus limitations
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Achiving scalability in a post-Moore era

Single-thread performance increases are long gone
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Key is now more processing elements (threads, cores, sockets, . ..)
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Dealing with the data deluge

Increasingly often impossible/impractical to move data to central location

Geographically dispersed data, heterogenous compute resources
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Dealing with the data deluge

Natural with master-worker solutions:
e master maintains decision vector, queries workers in parallel

e workers return delayed gradients of their data loss
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Q: What is the impact of time-varying delays on the algorithm convergence?
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Limits of scalability

Speed-ups limited by fraction of code a which is parallelizable.

9 Speedup 50 Scaled speedup
8 50
7
6 40
& L
=, 30
g g
-~ —
4 20
3
10
2
1 0
14 8 16 32 64 14 8 16 32 64
Number of processors Number of processors

Idealized behaviors, further impaired by
e synchronization and lock management, communication, load imbalance

(challenges on multi-cores and clouds are surprisingly similar)
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Lock-free implementations: consistent and inconsistent read

Shared Consistent Inconsistent
memory read read

B = write [l =read
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Time-delay models of asynchronism Lyapunov analysis of synchronous algorithms

Consistent read of vector x into variable z at time ¢: Convergence rates often derived using standard results for sequences.

e z(t) has existed in shared memory at some time '
Example. Gradient method with strongly convex objective satisfies
z(t) = x(t — d(t))
Vi1 < pVie +r
homogeneous time delay for all components of z
which allows to conclude that V}, < p¥Vj + e where e = 7/(1 — p).

Inconsistent read of z into z at time ¢:
Example. Gradient method for Lipschitz gradients analyzed by establishing

e complete vector z(t) has never existed in memory, only its components

Vir: < Vi — V2
zi(t) = xi(t — d;(t)) k1 < Vi —aVy

which implies that V}, < V5 /(1 + akVp).
heterogeneous delays

We will assume that information delays are bounded, arbitrarily time-varying.
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Lyapunov analysis of asynchronous algorithms Convergence results for delayed sequences

Asynchronous algorithms result in sequences on the form Lemma 1. Let {V}} be a sequence of real numbers satisfying
Vi1 < f(Vi, Vie—a,,) + ex Vig1 <pVie+q max  Vj+r
k—dp<j<k

Much harder to analyze, much less theoretical support. for some non-negative numbers p, g and 7. If p+ ¢ < 1 and

X X 0 < dlc < dmax
Coming up: two sequence lemmas and an application

— allow for simple and uniform treatment of asynchronous algorithms for all k, then

— balance simplicity, applicability and power; support analytical results Vi < pkv(o) +e

where p = (p + ¢)t/(1Fdma) and e = r/(1 — p — q).

[Feyzmahdavian, Aytekin and Johansson, 2014]
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Convergence results for delayed sequences Problem formulation

Lemma 2. Assume that the non-negative sequences {V}} and {wy} satisfy

k minimize 37", fi(z) + h(z)
z€ER
Vg1 < pVip —bwg +a E wy (1) ©
Jj=k—dmax

. e m samples, decision vector z € R"
for some real numbers p € (0,1) and a,b > 0, and some integer dyax > 0. pies, <

Assume also that wy = 0 for k < 0, and that e fi(x) loss of sample i for decision x; h(x) is regularizer
dmax 1 .
a_1-pinet <b Assumptions:
— dimax - :
L=p p e each f; is convex, differentiable with Lipschitz continuous gradient
Then, Vi, < pFV; for all k > 0. e 3. fi is strongly convex

e h is proper convex (but may be non-smooth, extended-real valued)

Examples: ¢;-regularized least-squares, constrained logistic regression, ...

[Aytekin, Feyzmahdavian, Johansson, 2016]
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The proximal incremental aggregate gradient algorithm Related work

Idea: Blatt et al. (2007):
e compute (incremental) gradient with respect to a subset of data e convex quadratic loss, no regularizer, synchronous
e maintain (aggregate of) most recent gradient for each data point e rate of convergence, but no explicit step-size or convegence factors

e update = using prox-step w.r.t aggregate gradient and regularizer
Tsen and Yun (2014)

m
e convex loss with Lipschitz gradient, simple regularizer, asynchronous
g6 =>_ Vi (viar) gracien S y
P e rate of convergence, but no explicit step-size or convegence factors

— H 1 2 h
The1 = argming (g, @ — k) + o o = zxlz +hl) . Giirbiizbalaban et al. (2015)
e strongly convex loss with Lipschitz gradient, no regularizer, asynch.

e explicit step-sizes and convergence factors

Motivation: fewer calculations per iteration, faster wall-clock convergence
(cf. SAG (Le Roux et al. 2012 ), IAG (Giirbiizbalaban et al. 2015), ...)

and more (e.g. stochastic average gradient, ...)
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Proximal incremental aggregate gradient on parameter server Proximal incremental aggregate gradient on parameter server

Each worker w:
e receives new iterate from master, computes gradients of local data loss,

9k = in,- (m’“—di> @ Z Vfi(zr)

i=1
1€Ly

. 1
s = argmin{ (g~ 0) + gole B4 h@) ()
v e pushes this quantity to master (arrives with total delay d}!)

. . Master:
Natural parameter-server implementation:

e Data distributed over multiple workers ({1,...,m} =7, UZ,,...)
e Master node maintains iterate =, queries nodes for gradients i
gk =Y Viiwia)

e maintains aggregate gradient

i=1

Time-varying, heterogeneous delays di, between master and worker i.
e updates iterate via prox-step, pushes xj41 to workers
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PIAG on the parameter server Main result

Theorem. Assume that each Vf; is L;-Lipschitz continuous, >", f; is
p-strongly convex, and dj, < dmax for all i. If the step-size a satisfies:

et 1+ g — 1
<

- 1

« )

where L = 25:1 L,,, then the iterates generated by (2), (3) satisfy:

k
1
o =213 < (g ) oo = 2B

V& )Vy
Vf1(ka %:2
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Discussion Proof sketch
Linear convergence, even in presence of proximal term. Lemma 2. Assume that the non-negative sequences {V}} and {wy} satisfy
In absence of asynchronism, can pick o = 1/L to guarantee k
Vit < aVy —bw, + ¢ Z wj ,
j=k—dmax

k
L
oy —a* |3 < { 7] llzo — "3
2 1’ 2 .
T h for some real numbers a € (0,1) and b, ¢ > 0, and some integer dyax > 0.

Assume also that wy = 0 for k < 0, and that the following holds:

Graceful slowdown guaranteed, as dy,ax increases

¢ 1 — gimaxt1

<b.
pzl_# 1—a admax -
(1 + dmax)2
Then, Vi, < a*V} for all k > 0.
(similar to best known estimates for h = 0)
Sharper bounds, shorter and simpler proof than related work.
M. Johansson (KTH) LCC Workshop, June 2017 M. Johansson (KTH) LCC Workshop, June 2017 22 /38
Proof sketch Parameter-server implementation on EC2
Convexity and Lipschitz continuity of gradients imply Binary classification via ¢1-regularized logistic regression on rcvi-v2
) 2 e 2 2
Zfi(xk+1) < Zfz(x) + (9K, Thy1 — x) + Z ?Z”xk_l,_]_ —Tp_aillz Vo minimize — Z (log (1 +exp (— bi<ai7$>)) + 2||$||2> + Al
i=1 i=1 i=1 i=1
By strong convexity of >, f; + h, optimality conditions, and Jensen's ineq Parameter-server implementation of (2), (3) on Amazon EC2:
e 3 compute nodes (c4.2xlarge: 8 CPUs, 15 GB RAM, each),
|21 — 2*3 < llzk —*||3 — llzre1 — zrl5+ o one in Ireland (EU),
poc+1 poe+1 o one in North Virginia (US),
(dmax + 1)L k ) o one in Tokyo (AP),
T pa+ 1 Z 1 = ;2 e 2 workers in each node (a total of 6 workers)

Jj=k—dmax
e Master node on computer at KTH in Stockholm, Sweden.

Now our Lemma applies and allows to conclude linear rate of convergence.
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Parameter-server implementation on EC2 Parameter-server implementation on EC2

Amazon sent us the bill for the figure. ..
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Computing far from free, communication surprisingly expensive.
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Contents Data sparsity implies dimensionality reduction
o Motivation Standard definition: many elements are zero (more than 66%)
e Theory for asynchronous and lock-free computations e common feature of many large-scale data sets (e.g. in svmlib)

Exploiting sparsity to speed up convergence T . . . .
P £ sparstty P P g Standard implication: dimensionality reduction

Conclusions .
e can store data more efficiently (row, col, val)

e approximate low-rank matrix representations

We will exploit another implication of sparsity. . .
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Data sparsity implies decoupling

Example. Draw rows from matrix A € R™*™ with probability 1/m.
Eai, a;) < Ellai|[3

Inner product much smaller when A is sparse (can even be zero)!

How can we quantify and exploit this property?
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Graphical representations of sparsity

Features

|

Samples
Samples
Features
Samples

Key quantities:
e maximum feature degree A, = max; [{¢ : j € supp(a;)}|

e maximum or average conflict degree A% = > ; H{supp(a;) Nsupp(a;) # 0

With Apax = max; A%, and A, =", AL/m, it holds that

1+ A, 1 Aax
Bla,a;) < min § (/1520 15 B J20 G g2 oma 3
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Graphical representations of sparsity

Features

|

Samples

Several graphical representations of sparsity
e bipartite sample-feature graph (edges if sample contains feature)
e sample conflict graph (edges if samples overlap in some feature)

Samples

(cf. Mania et al., arXiv:1507.06970)

Aim: use graphs to compute measure ¢ such that

M. Johansson (KTH)

E(a;,a;) < oB[ai3
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How sparse is real-world data?

Features

Samples

30/ 38

Sparsity measure o on data from libsvm (recall: E{a;,a;) < cE|a;||3)
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Data set name | o
kddb.t 0.255
wida 0.61
rcvl 0.627
protein.t 0.669
news20 0.727
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How can we use this sparsity in first-order methods? Mini-batch optimization under data sparsity

Many machine-learning problem are on the form Assume that each f; is L-Lipschitz continuous, total loss p-strongly convex.
Form mini-batch by sampling with replacement using probabilities 1/m.
minimize S fi() = elalz — b))
xeR™

Mini-batch gradient descent generate iterates {x(¢)} which satisfy
with f;(z) = ¢(alx — b;). Gradients have same sparsity pattern as data. NP o
() — 2™z < p'[|x(0) — 27|z + e

We will focus on mini-batch gradient descent:

with
wt+1)=2(t)-T > %Vfi(x) _, M 0
ies(t) P= "1 (M —1)o2mL
, . . 1 o2
where S(t) is a mini-batch of size M, drawn from {1,...,m}. e= L ; IV filz™)|l3

Recovers classical results in absence of sparsity, improvements when o small.
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Application to binary classification Many extensions

Binary classification on data set with m = 150000, n = 3000 and A,. = 400 Can allow different Lipschitz constants, bias-convergence trade-off params.

1900 N E— Can derive similar results in absence of strong convexity.

— e 1

Tann s ® Can deal with mini-batch proximal minimization for problems on the form
1000 L. ) m

minimize S, fi(x) + g(o)
zER™
Possible to combine with stochastic variance reduction (SVRG, etc.)
500 -
0 0 1 0‘00 20‘00 3(:;00 4000 5000 6(:;00

computation time [sec]
Significant speed-ups by exploiting sparsity!
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Pre-processing effort

Feature-degree practically for free.

Conflict graph very large, costly to form and manipulate
e some data set in libsvm takes about a day to analyze on standard PC

e tailored GPU code runs in more than 10x faster

Still, in practice, seems reasonable to focus on feature degree.
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Conclusions

Scalability in a big-data, post-Moore world:
e parallel and distributed optimization

e exploiting structure, dealing with asynchronism, respecting architectures

Theory from lock-free and asynchronous computation
e two simple, yet powerful, sequence lemmas

e PIAG: convergence guarantees + cloud implementation
Exploiting data sparsity

e Graphical measures of data sparsity, evaluation on svmlib data

e Significant convergence guarantee improvements for mini-batch GD
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