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Convex optimization problem — Classical form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

I variable x ∈ Rn

I equality constraints are linear

I f0, . . . , fm are convex: for θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., fi have nonnegative (upward) curvature
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Convex optimization — Cone form

minimize cT x
subject to x ∈ K

Ax = b

I variable x ∈ Rn

I K ⊂ Rn is a proper cone
I K nonnegative orthant −→ LP
I K Lorentz cone −→ SOCP
I K positive semidefinite matrices −→ SDP

I the ‘modern’ canonical form
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Medium-scale solvers

I 1000s–10000s variables, constraints

I reliably solved by interior-point methods on single machine
(especially for problems in standard cone form)

I exploit problem sparsity

I no algorithm tuning/babysitting needed

I not quite a technology, but getting there

I used in control, finance, engineering design, . . .
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Large-scale solvers

I 100k – 1B variables, constraints
I solved using custom (often problem specific) methods

I limited memory BFGS
I stochastic subgradient
I block coordinate descent
I operator splitting methods

I (when possible) exploit fast transforms (FFT, . . . )

I require custom implementation, tuning for each problem

I used in machine learning, image processing, . . .
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Modeling languages

I (new) high level language support for convex optimization
I describe problem in high level language
I description automatically transformed to a standard form
I solved by standard solver, transformed back to original form
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Modeling languages

u = . . .
v = . . .
problem = . . .

min. cT x
s.t. x ∈ K

Ax = b

x = (1.58, . . .
...

u = (0.59, . . .
v = (1.9, . . .

canonicalize

solve

unpack
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Implementations

convex optimization modeling language implementations

I YALMIP, CVX (Matlab)

I CVXPY (Python)

I Convex.jl (Julia)

widely used for applications with medium scale problems
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CVX

(Grant & Boyd, 2005)

cvx_begin

variable x(n) % declare vector variable

minimize sum(square(A*x-b)) + gamma*norm(x,1)

subject to norm(x,inf) <= 1

cvx_end

I A, b, gamma are constants (gamma nonnegative)
I after cvx_end

I problem is converted to standard form and solved
I variable x is over-written with (numerical) solution
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CVXPY

(Diamond & Boyd, 2013)

from cvxpy import *

x = Variable(n)

cost = norm(A*x-b) + gamma*norm(x,1)

prob = Problem(Minimize(cost),

[norm(x,"inf") <= 1])

opt_val = prob.solve()

solution = x.value

I A, b, gamma are constants (gamma nonnegative)

I solve method converts problem to standard form, solves,
assigns value attributes
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Modeling languages

I enable rapid prototyping (for small and medium problems)

I ideal for teaching (can do a lot with short scripts)

I shifts focus from how to solve to what to solve

I slower than custom methods, but often not much

I this talk:
how to extend CVXPY to large problems, fast operators
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Colorization

I given B&W (scalar) pixel values, and a few colored pixels

I choose color pixel values xij ∈ R3 to minimize TV(x)
subject to given B&W values

I a convex problem [Blomgren and Chan 98]
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CVXPY code

from cvxpy import *

R, G, B = Variable(n, n), Variable(n, n), Variable(n, n)

X = hstack(vec(R), vec(G), vec(B))

prob = Problem(Minimize(tv(R,G,B)),

[0.299*R + 0.587*G + 0.114*B == BW,

X[known] == RGB[known],

0 <= X, X <= 255])

prob.solve()
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Example

512× 512 B&W image, with some color pixels given
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Example

2% color pixels given
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Example

0.1% color pixels given
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Nonnegative deconvolution

minimize ‖c ∗ x − b‖2
subject to x ≥ 0

variable x ∈ Rn; data c ∈ Rn, b ∈ R2n−1

from cvxpy import *

x = Variable(n)

cost = norm(conv(c, x) - b)

prob = Problem(Minimize(cost),

[x >= 0])

prob.solve()
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Abstract linear operator

linear function f (x) = Ax

I idea: don’t form, store, or use the matrix A
I forward-adjoint oracle (FAO): access f only via its

I forward operator, x → f (x) = Ax
I adjoint operator, y → f ∗(y) = AT y

I we are interested in cases where this is more efficient (in
memory or computation) than forming and using A

I key to scaling to (some) large problems
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Examples of FAOs

I convolution, DFT O(n log n)

I Gauss, Wavelet, and other transforms O(n)

I Lyapunov, Sylvester mappings X → AXB O(n1.5)

I sparse matrix multiply O(nnz(A))

I inverse of sparse triangular matrix O(nnz(A))
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Compositions of FAOs

I represent linear function f as computation graph
I graph inputs represent x
I graph outputs represent y
I nodes store FAOs
I edges store partial results

I to evaluate f (x): evaluate node forward operators in order

I to evaluate f ∗(y): evaluate node adjoints in reverse order
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Forward graph

Ax =

[
C (Bx1 + x2)

Dx2

]

x1

x2

B

copy

+ C

D
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Adjoint graph

AT y =

[
BTCT y1

CT y1 + DT y2

]

BT

+

copy CT

DT

y1

y2
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Matrix-free methods

I matrix-free algorithm uses FAO representations of linear
functions

I oldest example: conjugate gradients (CG)
I minimizes ‖Ax − b‖22 using only x → Ax and y → AT y
I in theory, finite algorithm
I in practice, not so much

I many matrix-free methods for other convex problems
(Pock-Chambolle, Beck-Teboulle, Osher, Gondzio, . . . )

I can deliver modest accuracy in 100s or 1000s of iterations

I need good preconditioner, tuning
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Matrix-free cone solvers

I matrix-free interior-point [Gondzio]

I matrix-free SCS [Diamond, O’Donoghue, Boyd]
(serial CPU implementation)

I matrix-free POGS [Fougner, Diamond, Boyd]
(GPU implementation)

I for use as a modeling language back end, we are interested
only in general preconditioners
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Matrix-free CVXPY

preliminary version [Diamond]

I canonicalizes to a matrix-free cone program

I solves using matrix-free SCS or POGS

our (modest?) goals: MF-CVXPY should often

I work without algorithm tuning

I be no more than 10× slower than a custom method
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Example: Nonnegative deconvolution

minimize ‖c ∗ x − b‖2
subject to x ≥ 0

variable x ∈ Rn; data c ∈ Rn, b ∈ R2n−1

I standard (matrix) method
I represent c∗ as (2n − 1)× n Toeplitz matrix
I memory is order n2, solve is order n3

I matrix-free method
I represent c∗ as FAO (implemented via FFT)
I memory is order n, solve is order n log n
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Nonnegative deconvolution timings
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Sylvester LP

minimize Tr(DTX )
subject to AXB ≤ C

X ≥ 0,

variable X ∈ Rp×q; data A ∈ Rp×p, B ∈ Rq×q, C ,D ∈ Rp×q

n = pq variables, 2n linear inequalities

I standard method
I represent f (X ) = AXB as pq × pq Kronecker product
I memory is order n2, solve is order n3

I matrix-free method
I represent f (X ) = AXB as FAO
I memory is order n, solve is order n1.5
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Sylvester LP timings
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Summary

I convex optimization problems arise in many applications

I small and medium size problems can be solved effectively
and conveniently using domain-specific languages, general
solvers

I we hope to extend this to large scale problems, fast
operators
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Resources

all available online

I Convex Optimization (book)

I EE364a (course slides, videos, code, homework, . . . )

I CVX, CVXPY, Convex.jl, SCS, POGS (code)

I preliminary version of MF-CVXPY (and SCS and POGS):
https://github.com/SteveDiamond/cvxpy
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