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Optimization problem defined over complex multi-agent systems

• No central authority

• Time-varying topology

The 𝑚 agents collaboratively solve:
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Decentralized OptimizationDecentralized Optimization

𝑓3 𝑥 , 𝑋3

𝑓2 𝑥 , 𝑋2

𝑓4 𝑥 , 𝑋4

𝑓5 𝑥 , 𝑋5

𝑓1 𝑥 , 𝑋1

𝑓6 𝑥 , 𝑋6

…

Communication is an important factor, but can be very expensive



• Lots of potential applications: swarming robots, drones…

• Strength in numbers

• Privacy preserving

• Distributed data mining/processing

• Convergence analysis and algorithms

• Scientifically interesting!!
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Decentralized OptimizationWhy interested?
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Decentralized OptimizationHow to Handle Decentralized Structure?

Everybody maintains 
a local copy of 𝑥

Only the central node 
maintains 𝑥



• Dual decomposition (explicit)

• Consensus (implicit)
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Decentralized OptimizationHow to Handle Decentralized Structure?



• Dual decomposition: Pros and Cons

• Need to solve nontrivial Lagrangian related local subproblem

• Requires a fewer number of communications

• Consensus: Pros and Cons

• Inexpensive local subgradient update in primal space

• Requires lots of inter-node communications

• Our Goal

6

Decentralized OptimizationHow to Handle Decentralized Structure?

Dual based decentralized methods (optimal communication)
whose local subproblems can be solved easily through linearizations



1. Decentralized Communication Sliding Method (DCS)

• Subproblems solved approximately using exact subgradients

2. Stochastic Decentralized Communication Sliding (SDCS)

• Subproblems solved approximately using noisy subgradients
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Decentralized OptimizationThis Talk

Decentralized Optimization for Nonsmooth Functions



• Iteration complexity to find a solution  𝑥 such that 𝑓  𝑥 − 𝑓∗ ≤ 𝜖

Comparable to the best known results in centralized mirror descent
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Decentralized OptimizationConvergence Rates

Algorithm Requirement Communication
Gradient

Computation

DCS

Exact subgradient
Convexity

1/𝜖 1/𝜖2

Exact subgradient
Strong convexity 1/ 𝜖 1/𝜖

SDCS

Noisy subgradient
Convexity

1/𝜖 1/𝜖2

Noisy subgradient
Strong convexity 1/ 𝜖 1/𝜖
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Decentralized OptimizationHighlights of Our Contributions

Algorithm Requirement Communication
Gradient

computation

ADMM /
GD+Backtraking

Smoothness
Strong convexity
Unconstrained

log 1/𝜖 log 1/𝜖

(Proximal) AGD + 
multistep consensus

Smoothness
Unconstrained

1

𝜖
log

1

𝜖
(1/𝜖) 1/ 𝜖

Decentralized
Stochastic MD*

Strong convexity 1/𝜖 1/𝜖

DCS/SDCS Convexity 1/𝜖 1/𝜖2

DCS/SDCS* Strong convexity 1/ 𝜖 1/𝜖

Communication is about 1000 times more expensive!! 
• Communication over TCP/IP: 10KB/ms + a few ms for startup
• CPUs read/write from/to memory:10KB/µs

*Noisy subgradient can be used



• Distance generating function

𝜔:𝑋 → ℝ, differentiable and strongly convex with modulus 𝜈 > 0

• Prox-function or Bregman distance function induced by 𝜔

• For all agent 𝑖, we assume 𝜈 = 1

• We also assume 𝐕 is growing quadratically with constant 
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Decentralized OptimizationBackground: Bregman Distance Function



Let 𝑵𝒊 denote the set of neighbors of agent 𝑖:

Then, the Laplacian 𝑳 ∈ ℝ𝑚×𝑚
of a graph               is defined as:  

For example:
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Decentralized OptimizationBackground: Laplacian 𝑳

1

2

3

“Agreement
Subspace”
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Decentralized OptimizationProblem Reformulation

(=)

If 𝑮 is connected

Using Laplacian 𝑳,
consistency constraints 
can be compactly rewritten

(=)

(=) Equivalent Saddle Point form



Let 𝒙0 = 𝒙−1 ∈ 𝑋𝑚, 𝒚 ∈ ℝ𝑚𝑑, 𝛼𝑡 , 𝜏𝑡 , {𝜂𝑡} and {𝜃𝑡} be given.

For 𝑡 = 1,… ,𝑁, update 𝒛𝑡 = (𝒙𝑡, 𝒚𝑡)

Return
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Decentralized OptimizationDecentralized Primal-Dual (DPD): Vector Form
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Decentralized OptimizationDPD: Agent 𝒊’s point of view

Let 𝑥𝑖
0 = 𝑥𝑖

−1 ∈ 𝑋𝑖 , 𝑦𝑖 ∈ ℝ𝑑, 𝛼𝑡 , 𝜏𝑡 , {𝜂𝑡} and {𝜃𝑡} be given.

For 𝑡 = 1,… ,𝑁, update 𝑧𝑖
𝑡 = (𝑥𝑖

𝑡 , 𝑦𝑖
𝑡)

Return

 Communication of updated primal

 Communication of updated dual

The algorithm is Decentralized!



Q: Is the subproblem always easy to solve?

A: No, solve this iteratively using linearization of 𝑓𝑖(𝑥𝑖)
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Decentralized OptimizationDecentralized Communication Sliding (DCS)

The same 𝒘𝒊
𝒕 is used, communication is skipped!

There are two outputs 𝒙𝒊
𝒕 and  𝒙𝒊

𝒕

Let 𝑢0 =  𝑢0 = 𝑥𝑖
𝑡−1, 𝛽𝑘 and {𝜆𝑘} be given.

For 𝑘 = 1,… , 𝐾𝑡

Return 𝒙𝒊
𝒕 = 𝑢𝐾𝑡 and  𝒙𝒊

𝒕 =
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Decentralized OptimizationDecentralized Communication Sliding (DCS)

Let 𝑥𝑖
0 = 𝑥𝑖

−1 ∈ 𝑋𝑖 , 𝑦𝑖 ∈ ℝ𝑑, 𝛼𝑡 , 𝜏𝑡 , {𝜂𝑡},{𝜃𝑡} and {𝐾𝑡} be given.

For 𝑡 = 1,… ,𝑁, update 𝑧𝑖
𝑡 = ( 𝑥𝑖

𝑡 , 𝑦𝑖
𝑡)

Return

 Communication of updated primal

 Communication of updated dual

 No Communication!
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Decentralized OptimizationDCS: Convergence for Convex Cases

Theorem 1

Set parameters for 𝑡 = 1,… ,𝑁 and 𝑘 = 1,… , 𝐾𝑡

Then, iteration complexity to find a solution

such that 𝐹( 𝒙𝑁) − 𝐹∗ ≤ 𝜖 and 𝐋 𝒙𝑁 ≤ 𝜖

𝜶𝒕 Primal prediction 1 𝜷𝒌 Inner-loop projection 𝑘/2

𝝉𝒕 Dual projection 𝐋 𝝀𝒌 Inner-loop averaging 𝑘 + 1

𝜼𝒕 Primal Projection 2 𝐋
𝑲𝒕 # inner-loop iterations

𝜽𝒕 Outer-loop averaging 1

for communications

for gradient computations



18

Decentralized OptimizationDCS: Convergence for Strongly Convex Cases

Theorem 2

Set parameters for 𝑡 = 1,… ,𝑁 and 𝑘 = 1,… , 𝐾𝑡

Then, iteration complexity to find a solution

such that 𝐹( 𝒙𝑁) − 𝐹∗ ≤ 𝜖 and 𝐋 𝒙𝑁 ≤ 𝜖

𝜶𝒕 Primal prediction 𝑡

𝑡 + 1
𝜷𝒌 Inner-loop projection

𝝉𝒕 Dual projection 4 𝐋 2𝐶

𝑡 + 1 𝜇

𝝀𝒌 Inner-loop averaging 𝑘

𝜼𝒕 Primal Projection 𝑡𝜇

2𝐶 𝑲𝒕

# inner-loop iterations

𝜽𝒕 Outer-loop averaging 𝑡 + 1

for communications

for gradient computations



• Inner loop

• Recursive relation

• 𝑥𝑖
𝑡−1 = 𝑢0 and 𝑥𝑖

𝑡= 𝑢𝐾𝑡 is used for telescoping sum

•  𝑥𝑖
𝑡 =  𝑢𝐾𝑡 is used for actual perturbed primal-dual gap evaluation
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Decentralized OptimizationOutline of Convergence Analysis



• Outer loop
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Decentralized OptimizationOutline of Convergence Analysis

Primal distance

Dual distance Perturbation term

Accumulated inner-loop error



• Stochastic Decentralized Optimization

where 𝜉𝑖 models agent 𝑖’s uncertainty and ℙ 𝜉𝑖 not known.

• As a special case, sum of many components

• Only noisy first-order information 𝐺𝑖(⋅, 𝜉𝑖
𝑡) is available
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Decentralized OptimizationStochastic DCS (SDCS)



Q: Is the subproblem always easy to solve?

A: No, solve this iteratively using linearization of 𝑓𝑖(𝑥𝑖)
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Decentralized OptimizationStochastic DCS (SDCS)

The same 𝒘𝒊
𝒕 is used, communication is skipped!

There are two outputs 𝒙𝒊
𝒕 and  𝒙𝒊

𝒕

Let 𝑢0 =  𝑢0 = 𝑥𝑖
𝑡−1, 𝛽𝑘 and {𝜆𝑘} be given.

For 𝑘 = 1,… , 𝐾𝑡

Return 𝒙𝒊
𝒕 = 𝑢𝐾𝑡 and  𝒙𝒊

𝒕 =

 One data sample (Stochastic)!
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Decentralized OptimizationSDCS: Convergence for Convex Cases

Theorem 3

Set parameters for 𝑡 = 1,… ,𝑁 and 𝑘 = 1,… , 𝐾𝑡

Then, iteration complexity to find a solution

such that 𝐹( 𝒙𝑁) − 𝐹∗ ≤ 𝜖 and 𝐋 𝒙𝑁 ≤ 𝜖

𝜶𝒕 Primal prediction 1 𝜷𝒌 Inner-loop projection 𝑘/2

𝝉𝒕 Dual projection 𝐋 𝝀𝒌 Inner-loop averaging 𝑘 + 1

𝜼𝒕 Primal Projection 2 𝐋
𝑲𝒕

# inner-loop iterations

𝜽𝒕 Outer-loop averaging 1

for communications

for gradient computations
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Decentralized OptimizationSDCS: Convergence for Strongly Convex Cases

Theorem 4

Set parameters for 𝑡 = 1,… ,𝑁 and 𝑘 = 1,… , 𝐾𝑡

Then, iteration complexity to find a solution

such that 𝐹( 𝒙𝑁) − 𝐹∗ ≤ 𝜖 and 𝐋 𝒙𝑁 ≤ 𝜖

𝜶𝒕 Primal prediction 𝑡

𝑡 + 1
𝜷𝒌 Inner-loop projection

𝝉𝒕 Dual projection 4 𝐋 2𝐶

𝑡 + 1 𝜇

𝝀𝒌 Inner-loop averaging 𝑘

𝜼𝒕 Primal Projection 𝑡𝜇

2𝐶 𝑲𝒕

# inner-loop iterations

𝜽𝒕 Outer-loop averaging 𝑡 + 1

for communications

for gradient computations



Algorithm # of communications
# of subgradient
evaluations

DCS: Convex

DCS:
Strongly convex

SDCS: Convex

SDCS:
Strongly convex
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Decentralized OptimizationSummary of Convergence Results

Complexity for obtaining 𝝐-optimal and 𝝐-feasible solution

Comparable with centralized mirror-descent method



Conclusions

• First-order Decentralized Primal-Dual algorithm for convex 
nonsmooth deterministic/stochastic problems 

• Primal subproblems approximately solved using 
linearizations

• Communication Sliding to reduce communication overhead

• The most communication efficient algorithm until now in 
nonsmooth decentralized optimization

• Subgradient computation complexity comparable with 
centralized mirror-descent

• Ongoing work: Implementation, time-varying networks
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Decentralized OptimizationBoundedness of 𝒚∗

Theorem 4

Let 𝒙∗ be an optimal solution. Then, ∃𝒚∗ such that

where  𝜎𝑚𝑖𝑛(𝑳) denotes the smallest nonzero singular value of 𝑳.  

Proof. From the saddle point inequality, we have

From the definition of the subgradient, 

Everything can be represented in primal terms



Theorem 1

Let 𝒙∗ be an optimal point, and 

Then, for any 𝑁 ≥ 1, 

where
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Decentralized OptimizationDPD: Convergence Results

𝑶
𝟏

𝝐
iterations for 𝝐-optimal and 𝝐-feasible solution

# of required communication is also 𝑶
𝟏

𝝐
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Decentralized OptimizationOutline of Convergence Analysis

Definition: Primal-dual gap function 𝑄 𝒛;  𝒛

Given a pair of feasible solutions 𝒛 = (𝒙, 𝒚) and  𝒛 =  𝒙,  𝒚 ,

If 𝒛∗ = (𝒙∗, 𝒚∗) is a saddle point, 𝑄 𝒛∗;  𝒛 ≤ 0 for any  𝒛 ∈ 𝑋𝑚 × 𝑌

Definition: Perturbed Primal-dual gap function 𝒈𝒀(𝒔, 𝒛)

Proposition: 𝝐-optimal and 𝝐-feasible solution

If 𝑔𝑌 𝐋𝒙, 𝒛 < 𝜖 and 𝐋𝒙 < 𝜖, where 𝒛 ∈ 𝑋𝑚 × 𝑌, 
then 𝑥 is an 𝝐-optimal and 𝝐-feasible solution
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Decentralized OptimizationDCS: Convergence for Convex Cases

Theorem 2

Let 𝒙∗ be an optimal point, and 

Then, for any 𝑁 ≥ 1, 

where

𝑶
𝟏

𝝐
iterations for 𝝐-optimal and 𝝐-feasible solution

# of required communications is also 𝑶
𝟏

𝝐

# of subgradient evaluations is 𝑶
𝟏

𝝐𝟐
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Decentralized OptimizationDCS: Convergence for Strongly Convex Cases

Theorem 3

Let 𝒙∗ be an optimal point, and 

Then, for any 𝑁 ≥ 1, 

where

𝑶
𝟏

𝝐
iterations for 𝝐-optimal and 𝝐-feasible solution

# of required communications is also 𝑶
𝟏

𝝐

# of subgradient evaluations is 𝑶
𝟏

𝝐
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Decentralized OptimizationSDCS: Convergence for Convex Cases

Theorem 5

Let 𝒙∗ be an optimal point, and 

Then, for any 𝑁 ≥ 1, 

where

𝑶
𝟏

𝝐
iterations for 𝝐-optimal and 𝝐-feasible solution

# of required communications is also 𝑶
𝟏

𝝐

# of subgradient evaluations is 𝑶
𝟏

𝝐𝟐
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Decentralized OptimizationSDCS: Convergence for Strongly Convex Cases

Theorem 6

Let 𝒙∗ be an optimal point, and 

Then, for any 𝑁 ≥ 1, 

where

𝑶
𝟏

𝝐
iterations for 𝝐-optimal and 𝝐-feasible solution

# of required communications is also 𝑶
𝟏

𝝐

# of subgradient evaluations is 𝑶
𝟏

𝝐


