Multi-Level Condition-Based Maintenance Planning for Railway Infrastructures

> Zhou Su Ali Jamshidi Alfredo Núñez Simone Baldi Bart De Schutter

Delft Center for Systems & Control Section Railway Engineering Delft University of Technology

June 1

Outline

1 [Background](#page-2-0)

2 [Multilevel Maintenance Planning](#page-6-0) [High-Level Problem](#page-8-0) [Low-Level Problem](#page-34-0)

3 [Case Study](#page-38-0)

4 [Conclusions & Future Work](#page-44-0)

1 [Background](#page-2-0)

[High-Level Problem](#page-8-0)

[Low-Level Problem](#page-34-0)

-
-

$\widetilde{\mathbf{f}}$ UDelft

Dutch Railway Network

 4 ロ \rightarrow 4 \overline{r} \rightarrow \rightarrow \overline{z} \rightarrow

Overview

- One of the most intensive railway networks in Europe
- 6830 km of track, 388 stations, 7508 switches, 4500 km catenary
- Maintenance managed by ProRail, performed by contractors

$\tilde{\mathbf{f}}$ UDelft

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 4 / 38

 $2Q$

Track Defects & Interventions

$\tilde{\mathbf{f}}$ UDelft

4 ロ ▶ 4 伊

医间周的

 2990

Optimal Maintenance Planning

Preliminaries

- A railway network is divided into multiple sections
- Deterioration dynamics of each section is stochastic & independent

K ロ ▶ K 御 ▶ K ミ ▶

Performance Criteria

- Cost-efficiency
- **Robustness**
- Scalability

 $2Q$

2 [Multilevel Maintenance Planning](#page-6-0)

[High-Level Problem](#page-8-0) [Low-Level Problem](#page-34-0)

 $2Q$

K ロ ト K 御 ト K 君 ト K 君 ト

Multilevel Scheme for Maintenance Planning

2 [Multilevel Maintenance Planning](#page-6-0) [High-Level Problem](#page-8-0) [Low-Level Problem](#page-34-0)

High-level Intervention Planning

Problem Description

- Minimize expected condition deterioration & maintenance cost
- Subject to:
	- Safety constraints
	- Resource constraints

$\widetilde{\mathbf{f}}$ UDelft

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 10 / 38

 $2Q$

 \mathbb{B}^+

K ロ ⊁ K 倒 ≯ K ミ ▶ K

Deterioration Dynamics

Maintenance

- Cannot restore to perfect condition
- Becomes less effective the more it is applied

Renewal

- "As good as new" condition
- Expensive

Deterioration Model

Notations

$$
x_{j,k} = \begin{bmatrix} x_{j,k}^{\text{con}} & \text{Condition} \\ x_{j,k}^{\text{aux}} & \text{"Memory} \end{bmatrix}: \text{ state} \\ u_{j,k} \in \{ \underbrace{a_1, \dots, a_N}_{\text{No maintenance Interventions}} \}: N \text{ maintenance options}
$$

 $\theta_{i,k} \in \Theta_i$: **bounded** uncertain parameters with unknown probability distribution

Stochastic Deterioration Model

$$
x_{j,k+1} = f_j(x_{j,k}, u_{j,k}, \theta_{j,k})
$$

=
$$
\begin{cases} f_j^1(x_{j,k}, \theta_{j,k}) & \text{if } u_{j,k} = 1 \text{ Natural degradation} \\ f_j^q(x_{j,k}, \theta_{j,k}) & \text{if } u_{j,k} = q \text{ Effect of maintenance } \forall q \in \{2, ..., N-1\} \\ f_j^N(\theta_{j,k}) & \text{if } u_{j,k} = N \text{ Effect of renewal} \end{cases}
$$

 $\widetilde{\mathbf{f}}$ UDelft

 $2Q$

メロメ メタメ メミメ メミメ

Stochastic Local MPC Problem

Chance-Constrained MPC Problem

$$
\min_{\tilde{u}_{j,k},\tilde{y}_{j,k}} \mathbb{E}_{\tilde{\theta}_{j,k}}[J_j(\tilde{x}_{j,k},\tilde{u}_{j,k},\tilde{\theta}_{j,k})]
$$
\nsubject to:
$$
\tilde{x}_{j,k} = \tilde{f}_j(\tilde{u}_{j,k},\tilde{\theta}_{j,k};x_{j,k})
$$
\n
$$
\mathbb{P}_{\tilde{\theta}_{j,k}}\left[\max_{l=1,\ldots,N_{\text{P}}}\hat{x}_{j,k+l|k}^{\text{con}}(\tilde{u}_{j,k},\tilde{\theta}_{j,k};x_{j,k}) \leq x_{\text{max}}\right] \geq 1 - \epsilon_j
$$
\nChange Constant where ϵ_j is the violation level

Robust MPC Problem

$$
\min_{\tilde{u}_{j,k},\tilde{x}_{j,k}} \max_{\tilde{\theta}_{j,k} \in \tilde{\Theta}_j} J_j(\tilde{x}_{j,k},\tilde{u}_{j,k},\tilde{\theta}_{j,k})
$$
\nsubject to:
$$
\tilde{x}_{j,k} = \tilde{f}_j(\tilde{u}_{j,k},\tilde{\theta}_{j,k}; x_{j,k})
$$
\n
$$
\max_{l=1,...,N_{\rm p}} \max_{\tilde{\theta}_{j,k} \in \tilde{\Theta}_j} \hat{x}_{j,k+l|k}^{(\tilde{\omega}_{l})}(\tilde{u}_{j,k},\tilde{\theta}_{j,k}; x_{j,k}) \leq x_{\text{max}} \text{ Robust Constant}
$$

$\widetilde{\mathbf{f}}$ UDelft

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 13 / 38

 299

メロメ メタメ メミメ メミメ

Stochastic Local MPC Problem

Chance-Constrained MPC Problem

$$
\min_{\tilde{u}_{j,k},\tilde{y}_{j,k}} \mathbb{E}_{\tilde{\theta}_{j,k}}[J_j(\tilde{x}_{j,k},\tilde{u}_{j,k},\tilde{\theta}_{j,k})]
$$
\nsubject to:
$$
\tilde{x}_{j,k} = \tilde{f}_j(\tilde{u}_{j,k},\tilde{\theta}_{j,k};x_{j,k})
$$
\n
$$
\mathbb{P}_{\tilde{\theta}_{j,k}}\left[\max_{l=1,\ldots,N_{\text{P}}}\hat{x}_{j,k+l|k}^{\text{con}}(\tilde{u}_{j,k},\tilde{\theta}_{j,k};x_{j,k}) \leq x_{\text{max}}\right] \geq 1 - \epsilon_j
$$
\nChange Constant where ϵ_j is the violation level

Robust MPC Problem

$$
\min_{\tilde{u}_{j,k},\, \tilde{x}_{j,k}} \max_{\tilde{\theta}_{j,k} \in \tilde{\Theta}_j} J_j(\tilde{x}_{j,k},\, \tilde{u}_{j,k},\, \tilde{\theta}_{j,k})
$$
\nsubject to:
$$
\tilde{x}_{j,k} = \tilde{f}_j(\tilde{u}_{j,k},\, \tilde{\theta}_{j,k};\, x_{j,k})
$$
\n
$$
\max_{l=1,...,N_P} \max_{\tilde{\theta}_{j,k} \in \tilde{\Theta}_j} \hat{x}_{j,k+l|k}(\tilde{u}_{j,k},\, \tilde{\theta}_{j,k};\, x_{j,k}) \leq x_{\text{max}} \text{ Robust Constant}
$$

We choose chance-constrained MPC in order to avoid conservatism \tilde{f} UDelft

 $2Q$

メロメ メタメ メミメ メミメ

Scenario-based Approach

Scenario-based Approach

Approximate chance constraint by set of deterministic constraints:

$$
\max_{l=1,\ldots,N_{\mathrm{p}}} \hat{x}_{j,k+1|k}^{\mathrm{con}}(\tilde{u}_{j,k},\tilde{\theta}_{j,k}^{(h)};x_{j,k})\leq x_{\max} \quad \forall h \in \mathcal{H}_j
$$

 \mathcal{H}_j : set of random scenarios for section $j;~~\widetilde{\theta}_{j,k}^{(h)}:$ realization of $\widetilde{\theta}_{j,k}^{(h)}$ in scenario h

Remarks

• Sufficiently large $|\mathcal{H}_i|$ gives the **probabilistic guarantee**:

$$
\mathbb{P}_h\left[\mathbb{P}_{\tilde{\theta}_{j,k}}\left[\max_{l=1,\ldots,N_\mathrm{P}}\hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k},\,\tilde{\theta}_{j,k};\,\mathsf{x}_{j,k})\leq \mathsf{x}_{\max}\right]\geq 1-\epsilon_j\right]\geq 1-\beta_j
$$

- Integer decision variables \rightarrow non-convex chance-constrained MPC problem
- Existing bounds on $|\mathcal{H}_i|$ for non-convex chance-constrained problem are conservative

Scenario-based Approach

Scenario-based Approach

Approximate chance constraint by set of deterministic constraints:

$$
\max_{l=1,\ldots,N_{\mathrm{p}}} \hat{x}_{j,k+1|k}^{\mathrm{con}}(\tilde{u}_{j,k},\tilde{\theta}_{j,k}^{(h)};x_{j,k})\leq x_{\max} \quad \forall h \in \mathcal{H}_j
$$

 \mathcal{H}_j : set of random scenarios for section $j;~~\widetilde{\theta}_{j,k}^{(h)}:$ realization of $\widetilde{\theta}_{j,k}^{(h)}$ in scenario h

Remarks

• Sufficiently large $|\mathcal{H}_i|$ gives the **probabilistic guarantee**:

$$
\mathbb{P}_h\left[\mathbb{P}_{\tilde{\theta}_{j,k}}\left[\max_{l=1,\ldots,N_\mathrm{P}}\hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k},\,\tilde{\theta}_{j,k};\,\mathsf{x}_{j,k})\leq \mathsf{x}_{\max}\right]\geq 1-\epsilon_j\right]\geq 1-\beta_j
$$

- Integer decision variables \rightarrow non-convex chance-constrained MPC problem
- Existing bounds on $|\mathcal{H}_i|$ for non-convex chance-constrained problem are conservative

We choose the two-stage approach from Margellos et al. (2014)

 $2Q$

K ロ ⊁ K @ ▶ K 혼 ▶ K 결

Two-Stage Approach

Stage 1 Generate \mathcal{H}_i satisfying $|\mathcal{H}_j| \geq \bigg\lceil \frac{1}{\varepsilon}$ $\frac{1}{\epsilon_j}\cdot \frac{e}{e}$ $e-1$ $\biggl(2|\tilde{\Theta}_j|-1+\ln\displaystyle\frac{1}{\beta_j}$ \setminus and solve the convex scenario-based optimization problem min $\left\{ \left(\underline{\tau}_{i},\overline{\tau}_{i}\right)\right\} _{i=1}^{|\tilde{\Theta}_{j}|}$ $|\tilde{\Theta}_j|$ $i=1$ $\overline{\tau}_{i} - \underline{\tau}_{i}$ subject to: $(\tilde{\theta}_{j,k})_i^{(h)} \in [\underline{\tau}_i, \overline{\tau}_i] \quad \forall h \in \mathcal{H}, \forall i \in \{1, \ldots, |\tilde{\Theta}_j|\}$ to obtain the smallest hyperbox $\mathcal{B}^*_{j,k}$ covering all scenarios in $\mathcal{H}_j.$

Probabilistic Guarantee

$$
\mathbb{P}_h\left[\mathbb{P}_{\tilde{\theta}_{j,k}}\left[\tilde{\theta}_{j,k} \in \mathcal{B}_{j,k}^*\right] \geq 1-\epsilon_j\right] \geq 1-\beta_j
$$

$\tilde{\mathbf{f}}$ UDelft

4 ロ ▶ - 4 包 ▶ - 4 ミ ▶ - 4

 $2Q$

Two-Stage Approach

Stage 2
\nSolve the resulting **robust optimization problem**
\n
$$
\min_{\tilde{u}_{j,k}, \tilde{v}_{j,k}^{(h)}} \frac{1}{|\mathcal{H}_j|} \sum_{h \in \mathcal{H}_j} J_j(\tilde{x}_{j,k}^{(h)}, \tilde{u}_{j,k})
$$
\nsubject to:
$$
\max_{l=1,...,N_P} \max_{\tilde{\theta}_{j,k} \in \mathcal{B}_{j,k}^* \cap \tilde{\Theta}_j} \tilde{x}_{j,k+l|k}^{con}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \leq x_{\text{max}} \text{ Robust Constant}
$$
\n
$$
\tilde{x}_{j,k}^{(h)} = \tilde{f}_j(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}^{(h)}; x_{j,k}) \quad \forall h \in \mathcal{H}_j
$$

Remarks

- Less conservative than standard robust approach
- Tractability depends on the robust problem

Worst-Case Scenario

Worst-Case Scenario

• Define the worst-case scenario

$$
\tilde{\theta}_{j,k}^{(w)} \in \underset{\tilde{\theta}_{j,k} \in \mathcal{B}_{j,k}^{*} \cap \tilde{\Theta}_{j}}{\arg \max} \underset{l=1...N_{\mathrm{P}}}{\max} \hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k})
$$

 \bullet $\tilde{\theta}_{j,k}^{(w)}i$ is easy to obtain if $\hat{x}_{j,k+l|k}^{\mathrm{con}}$ is concave w.r.t. $\tilde{\theta}_{j,k}.$

Worst-Case Scenario

Worst-Case Scenario

• Define the worst-case scenario

$$
\tilde{\theta}_{j,k}^{(w)} \in \underset{\tilde{\theta}_{j,k} \in \mathcal{B}_{j,k}^{*} \cap \tilde{\Theta}_{j}}{\arg \max} \underset{l=1...N_{\mathrm{P}}}{\max} \hat{\mathbf{x}}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k})
$$

 \bullet $\tilde{\theta}_{j,k}^{(w)}i$ is easy to obtain if $\hat{x}_{j,k+l|k}^{\mathrm{con}}$ is concave w.r.t. $\tilde{\theta}_{j,k}.$

Sufficient Condition on Concavity

For
$$
f_j(x_{j,k}, u_{j,k}, \theta_{j,k}) = \begin{bmatrix} f_j^{\text{con}}(x_{j,k}, u_{j,k}, \theta_{j,k}) \\ f_j^{\text{aux}}(x_{j,k}, u_{j,k}, \theta_{j,k}) \end{bmatrix}
$$
, if f_j^{con} and f_j^{aux} are

- concave in $\tilde{\theta}_{i,k}$
- concave and non-decreasing in every dimension of $x_{i,k}$

then
$$
\hat{X}_{j,k+l|k}^{\text{con}}
$$
 is concave in $\tilde{\theta}_{j,k}$ for any $l = 1, ..., N_{p}$.

$\tilde{\mathbf{f}}$ UDelft

 $2Q$

K ロ ▶ K 倒 ▶ K 듣 ▶ K 듣)

Scenario-based Robust MPC

Deterministic MPC Problem

$$
\min_{\tilde{u}_{j,k},\; \tilde{x}_{j,k}^{(h)}} \frac{1}{|\mathcal{H}_j|} \sum_{h \in \mathcal{H}_j} J_j(\tilde{x}_{j,k}^{(h)},\; \tilde{u}_{j,k})
$$
\nsubject to:
$$
P_j \tilde{x}_{j,k}^{(w)} \leq x_{\text{max}} \quad \forall w \in \mathcal{W}_j
$$
\n
$$
\tilde{x}_{j,k}^{(s)} = \tilde{f}_j(\tilde{u}_{j,k},\; \tilde{\theta}_{j,k}^{(s)}; \; x_{j,k}) \qquad \forall s \in \mathcal{H}_j \cup \{\tilde{\theta}_{j,k}^{(w)}\}
$$
\n
$$
\text{Determine the relation model for scenario } s
$$

Deterministic prediction model for scenario s

Scenario-based Robust MPC

Deterministic MPC Problem

$$
\min_{\tilde{u}_{j,k},\, \tilde{\mathbf{x}}_{j,k}^{(h)}} \frac{1}{|\mathcal{H}_j|} \sum_{h \in \mathcal{H}_j} J_j(\tilde{\mathbf{x}}_{j,k}^{(h)},\, \tilde{u}_{j,k})
$$
\n
$$
\text{subject to: } P_j \tilde{\mathbf{x}}_{j,k}^{(w)} \leq \mathbf{x}_{\text{max}} \quad \forall w \in \mathcal{W}_j
$$
\n
$$
\tilde{\mathbf{x}}_{j,k}^{(s)} = \tilde{f}_j(\tilde{u}_{j,k},\, \tilde{\theta}_{j,k}^{(s)},\, \mathbf{x}_{j,k}) \qquad \forall s \in \mathcal{H}_j \cup \{\tilde{\theta}_{j,k}^{(w)}\}
$$
\n
$$
\text{Deterministic prediction model for scenario } s
$$

Remark

- Original stochastic dynamics is replaced by a set of deterministic dynamics
- Each deterministic dynamics follows a distinctive sequence of realizations of uncertainties

We still need to deal with hybrid dynamics

Frameworks for Hybrid MPC

MLD-MPC

- Optimizes a sequence of discrete control inputs
- Mixed integer programming problem

- Optimizes continuous time instants at which each intervention takes place
- Time instants rounded to nearest steps
- Non-smooth continuous optimization problem

K ロ ▶ K 倒 ▶ K 듣 ▶ K 듣 ▶

$\widetilde{\mathbf{f}}$ UDelft

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 19 / 38

 $2Q$

Centralized MPC Problem

Centralized MLD-MPC Problem

min
 $\tilde{\delta}_k, \tilde{z}_k$ $\sum_{n=1}^{n}$ j=1 $\epsilon_{j,1}^{\mathrm{T}}\tilde{\delta}_{j,k}+\epsilon_{j,2}^{\mathrm{T}}\tilde{z}_{j,k}$ Summation of local objective functions subject to: $\sum_{n=1}^{n}$ j=1 $R_j \widetilde{\delta}_{j,k} \leq r$ Global linear constraints on resources $F_{i,1}\tilde{\delta}_{i,k} + F_{i,2}\tilde{z}_{i,k} \leq l_i \quad \forall j \in \{1,\ldots,n\}$ Local constraints $\tilde{\delta}_k \in \bigtimes^n \{0, 1\}^{n_{\tilde{\delta}_j}}$ Binary variables $i=1$ $\tilde{z}_k \in$ $\bigtimes^n \tilde{Z}_j \subset \bigtimes^n \mathbb{R}^{n_{\tilde{z}_j}}$ Continuous variables $j=1$ $j=1$

$\tilde{\mathbf{f}}$ UDelft

 $2Q$

K ロ ⊁ K 個 ≯ K ミ ⊁ K

Remark on Complexity

Scenario-based Deterioration Model

$$
x_{j,k+1}^{(s)} = f_j(x_{j,k}, u_{j,k}, \theta_{j,k}^{(s)})
$$

=
$$
\begin{cases} f_j^1(x_{j,k}, \theta_{j,k}^{(s)}) & \text{if } u_{j,k} = 1 \\ f_j^q(x_{j,k}, \theta_{j,k}^{(s)}) & \text{if } u_{j,k} = q \quad \forall q \in \{2, ..., N-1\} \\ f_j^N(\theta_{j,k}^{(s)}) & \text{if } u_{j,k} = N \end{cases}
$$

Size of Centralized MLD-MPC Problem

- Linear dynamics
	- # binary variables \propto # sections
- Piecewise-affine dynamics
	- # binary variables \propto # sections & # scenarios

Distributed Optimization

Motivation

Centralized problem is intractable for large-scale networks with high-dimensional uncertainties

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 22 / 38

メロメ メタメ メミメ メミメ

 $2Q$

Distributed Optimization

Motivation

Centralized problem is intractable for large-scale networks with high-dimensional uncertainties

Decomposition Methods

- The centralized problem is only coupled by global constraints
- Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition

Basic Idea

- Define $\mathcal{P}_{j,k} = \{(\tilde{\delta}_{j,k}, \tilde{z}_{j,k}) \in \{0, 1\}^{n_{\tilde{\delta}_j}} \times \tilde{\mathcal{Z}}_j$: $F_{i,1}\tilde{\delta}_{i,k} + F_{i,2}\tilde{z}_{i,k} \leq l_i$ as the local feasible region for section *j*
- Define generating set $G_{i,k}$ containing extreme points (columns) of $Conv(\mathcal{P}_{i,k})$
- (Minkowski's Theorem) Each point in $Conv(\mathcal{P}_{i,k})$ can be written as a convex combination of columns $g \in \mathcal{G}_{i,k}$

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 23 / 38

 $2Q$

≮ロ ⊁ ⊀ 倒 ≯ -∢ ミ ▶ -∢

$\tilde{\mathbf{f}}$ UDelft

Dantzig-Wolfe Reformulation

Dantzig-Wolfe Reformulation

$$
\min_{\mu} \sum_{j=1}^{n} \sum_{g \in \mathcal{G}_{j,k}} (c_{j,1} \tilde{\delta}_{j,k}^{[g]} + c_{j,2} \tilde{z}_{j,k}^{[g]}) \mu_{j,g}
$$
\nsubject to:
$$
\sum_{j=1}^{n} \sum_{g \in \mathcal{G}_{j}} (R_{j} \tilde{\delta}_{j,k}^{[g]}) \mu_{j,g} \le r \text{ Global constraint}
$$
\n
$$
\sum_{g \in \mathcal{G}_{j}} \mu_{j,g} = 1 \quad \forall j \in \{1, \dots, n\} \text{ Convexity constraints}
$$
\n
$$
\mu_{j,g} \in \{0,1\} \quad \forall g \in \mathcal{G}_{j,k}, \forall j \in \{1, \dots, n\} \text{ Binary condition}
$$

K ロ ト K 御 ト K 君 ト K 君 ト $2Q$ E Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 24 / 38

Dantzig-Wolfe Reformulation

Dantzig-Wolfe Reformulation

$$
\min_{\mu} \sum_{j=1}^{n} \sum_{g \in \mathcal{G}_{j,k}} (c_{j,1} \tilde{\delta}_{j,k}^{[g]} + c_{j,2} \tilde{z}_{j,k}^{[g]}) \mu_{j,g}
$$
\nsubject to:
$$
\sum_{j=1}^{n} \sum_{g \in \mathcal{G}_{j}} (R_{j} \tilde{\delta}_{j,k}^{[g]}) \mu_{j,g} \le r \text{ Global constraint}
$$
\n
$$
\sum_{g \in \mathcal{G}_{j}} \mu_{j,g} = 1 \quad \forall j \in \{1, \dots, n\} \text{ Convexity constraints}
$$
\n
$$
\mu_{j,g} \in \{0,1\} \quad \forall g \in \mathcal{G}_{j,k}, \forall j \in \{1, \dots, n\} \text{ Binary condition}
$$

Remarks

- Reformulation is equivalent
- Master problem: linear relaxation of Dantzig-Wolfe reformulation
- Generating set $\mathcal{G}_{i,k}$ can be huge

$\widetilde{\mathbf{f}}$ UDelft

 299

 \mathbb{B}^+

K ロ ⊁ K 倒 ≯ K ミ ▶ K

Restricted Master Problem

- **Master problem with partial** generating sets $\mathcal{G}^{\mathrm{s}}_{j,k} \subset \mathcal{G}_{j,k}$
- Linear programming problem
- Its dual gives the shadow prices

Subproblem

- Pricing problem giving the most "attractive" column
- MILP
- Its optimum gives the reduced cost

Restricted Master Problem

- **Master problem with partial** generating sets $\mathcal{G}^{\mathrm{s}}_{j,k} \subset \mathcal{G}_{j,k}$
- Linear programming problem
- Its dual gives the shadow prices

Subproblem

- Pricing problem giving the most "attractive" column
- MILP
- Its optimum gives the reduced cost

Column generation terminates when all reduced costs are 0

Bounds

- Upper & Lower bounds can be used to accelerate the procedure
- Binary solution of restricted master problem \rightarrow upper bound
- Lagrangian dual function of centralized MPC problem \rightarrow lower bound

Bounds

- Upper & Lower bounds can be used to accelerate the procedure
- Binary solution of restricted master problem \rightarrow upper bound
- Lagrangian dual function of centralized MPC problem \rightarrow lower bound

Solution Quality

- Upper bound =Lower bounds: exact solution of Dantzig-Wolfe reformulation
- Fractional solution with zero reduced costs
	- Solve restricted master problem as an integer programming problem with resulting partial generating sets
	- Suboptimal solution

2 [Multilevel Maintenance Planning](#page-6-0) [High-Level Problem](#page-8-0) [Low-Level Problem](#page-34-0)

Problem Description

Preliminaries

- Base: storage place of machinery
- Maintenance operation: one round tour of maintenance crew
- One operation per time period
- One time budget per period
- An estimated maintenance time for each line can be obtained from high level

Goal

- Optimal schedule for the maintenance crew
- Minimize setup costs & total travel costs

∢ロト ∢母 ト ∢ 目 ト ∢ 目)

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 28 / 38

 $2Q$

Physical Network to Virtual Graph

Transformation

Arc Routing Problem

Capacitated Arc Routing Problem with Fixed Costs (CARPFC)

Finding optimal set of routes for a fleet of vehicles

- Minimize fixed setup costs & travel costs
- Cover all required edges
- Satisfy demands
- Not exceed vehicle capacity

Settings

- Periods with same time budget & setup costs \rightarrow Homogeneous CARPFC
- Periods with different time budget & setup costs \rightarrow Heterogeneous CARPFC

Solution Approach

- Transformation into equivalent node routing problems
- # nodes (new graph) = $2 \times #$ required edges

$\tilde{\mathbf{f}}$ UDelft

 $2Q$

K ロ ⊁ K 倒 ≯ K 差 ▶ K

[High-Level Problem](#page-8-0) [Low-Level Problem](#page-34-0)

3 [Case Study](#page-38-0)

$\widetilde{\mathbf{f}}$ UDelft

K ロ ト K 御 ト K 君 ト K 君 ト $2Q$ Ė Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 31 / 38

Case Study: Treatment of Ballast Defects

Deterioration Model

$$
x_{j,k+1}^{\text{con}} = \begin{cases} a_j x_{j,k} & \text{if } u_{j,k} = 1 \text{ No maintenance} \\ x_{j,k}^{\text{aux}} & \text{if } u_{j,k} = 2 \text{ Tamping} \\ \underline{x} & \text{if } u_{j,k} = 3 \text{ Renewal} \end{cases}
$$
\n
$$
x_{j,k+1}^{\text{aux}} = \begin{cases} x_{j,k}^{\text{aux}} & \text{if } u_{j,k} = 1 \text{ No maintenance} \\ x_{j,k}^{\text{aux}} + \alpha_j & \text{if } u_{j,k} = 2 \text{ Tamping} \\ \underline{x} & \text{if } u_{j,k} = 3 \text{ Renewal} \end{cases}
$$
\n
$$
\theta_{j,k} = [a_j \alpha_j]^{\text{T}}
$$

K ロ ⊁ K 倒 ▶ K ミ ▶

Settings

Sampling time: 3 months Prediction & Control horizon: 6 steps (18 months)

$\tilde{\mathbf{f}}$ UDelft

 $2Q$

Settings Low Level

Physical Network

- Part of Dutch railway network including Randstadt Zuid and the middle-south region
- Each line divided into 5-km section
- 13 lines, 53 sections
- A line is to be tamped if any section of it is suggested by the high-level controller

Time Periods for Tamping

- One long period (6 h), two short periods (4 h)
- 120 kEuro for long period, 100 kEuro for short period

 4 \Box \rightarrow \rightarrow \Box \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

$\tilde{\mathbf{f}}$ UDelft

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 33 / 38

 $2Q$

Simulation Results: High Level

- \bullet x: condition
- u : maintenance option (1 for no maintenance, 2 for tamping, 3 for ballast renewal)

$\widetilde{\mathbf{f}}$ UDelft

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 34 / 38

扂

つへへ

Simulation Results: Low Level

Optimal Routes 0→6⇒8→6→5→7 ⇒5→3→4⇒3→4→2 ⇒4→6→0

$\widetilde{\mathbf{f}}$ UDelft

 \circ

Comparison with Centralized MPC

CPU Time

Settings

- Desktop computer with Quad Core CPU and 64 GB RAM
- Matlab 2016B on SUSE Linux Enterprise Desktop 12
- CPLEX 12.7 as MILP & LP solver

メロメ メタメ メミメ メミメ

$\widetilde{\mathbf{f}}$ UDelft

Zhou Su (DCSC) [LCCC Focus Period](#page-0-0) June 1 36 / 38

 $2Q$

[High-Level Problem](#page-8-0) [Low-Level Problem](#page-34-0)

4 [Conclusions & Future Work](#page-44-0)

$\widetilde{\mathbf{f}}$ UDelft

Conclusions & Future Work

Conclusions

- Integrated multi-level approach for track maintenance planning
- Tractable, robust and scalable

Future work

- Improved Dantzig-Wolfe decomposition
- Comparison with other distributed optimization method for MILP

 $2Q$

K ロ ⊁ K 倒 ≯ K ミ ▶ K