Multi-Level Condition-Based Maintenance Planning for Railway Infrastructures

> Zhou Su Ali Jamshidi Alfredo Núñez Simone Baldi Bart De Schutter

Delft Center for Systems & Control Section Railway Engineering Delft University of Technology

June 1

Outline

1 Background

2 Multilevel Maintenance Planning High-Level Problem Low-Level Problem

- 3 Case Study
- **4** Conclusions & Future Work

1 Background

2 Multilevel Maintenance Planning High-Level Problem Low-Level Problem

3 Case Study

4 Conclusions & Future Work

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

lune 1 3 / 38

Dutch Railway Network

Overview

- One of the most intensive railway networks in Europe
- 6830 km of track, 388 stations, 7508 switches, 4500 km catenary
- Maintenance managed by ProRail, performed by contractors

Track Defects & Interventions

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

June 1 5 / 38

Optimal Maintenance Planning

Preliminaries

- A railway network is divided into multiple sections
- Deterioration dynamics of each section is stochastic & independent

Performance Criteria

- Cost-efficiency
- Robustness
- Scalability

Zhou Su (DCSC)

LCCC Focus Period

June 1 6 / 38

Background

2 Multilevel Maintenance Planning

High-Level Problem Low-Level Problem

3 Case Study

4 Conclusions & Future Work

ou Su (DCSC)

LCCC Focus Period

Multilevel Scheme for Maintenance Planning

Background

2 Multilevel Maintenance Planning High-Level Problem

3 Case Study

4 Conclusions & Future Work

hou Su (DCSC)

LCCC Focus Period

lune 1 0 / 39

High-level Intervention Planning

Problem Description

- Minimize expected condition deterioration & maintenance cost
- Subject to:
 - Safety constraints
 - Resource constraints

TUDelft

		-		
/hou '	511 (1.10	50	
LIIOU				<u>ر</u> ب

Deterioration Dynamics

Maintenance

- Cannot restore to perfect condition
- Becomes less effective the more it is applied

Renewal

- "As good as new" condition
- Expensive

Deterioration Model

Notations

$$x_{j,k} = \begin{bmatrix} x_{j,k}^{\text{con}} & \text{Condition} \\ x_{j,k}^{\text{aux}} & \text{`'Memory''} \end{bmatrix}$$
: state

 $u_{j,k} \in \{\underbrace{a_1,}_{\text{No maintenance}}, \underbrace{a_2 \dots, a_N}_{\text{Interventions}}\}$: *N* maintenance options

 $\theta_{j,k} \in \Theta_j$: **bounded** uncertain parameters with unknown probability distribution

Stochastic Deterioration Model

$$\begin{aligned} x_{j,k+1} &= f_j(x_{j,k}, \ u_{j,k}, \ \theta_{j,k}) \\ &= \begin{cases} f_j^{1}(x_{j,k}, \ \theta_{j,k}) & \text{if } u_{j,k} = 1 \text{ Natural degradation} \\ f_j^{q}(x_{j,k}, \ \theta_{j,k}) & \text{if } u_{j,k} = q \text{ Effect of maintenance } \forall q \in \{2, \dots, N-1\} \\ f_j^{N}(\theta_{j,k}) & \text{if } u_{j,k} = N \text{ Effect of renewal} \end{cases} \end{aligned}$$

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

June 1 12 / 3

Stochastic Local MPC Problem

Chance-Constrained MPC Problem

$$\begin{split} \min_{\tilde{u}_{j,k}, \tilde{x}_{j,k}} \mathbb{E}_{\tilde{\theta}_{j,k}} \left[J_j(\tilde{x}_{j,k}, \tilde{u}_{j,k}, \tilde{\theta}_{j,k}) \right] \\ \text{subject to: } \tilde{x}_{j,k} &= \tilde{f}_j(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \\ \mathbb{P}_{\tilde{\theta}_{j,k}} \left[\max_{l=1,\dots,N_{\mathrm{P}}} \hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \le x_{\max} \right] \ge 1 - \epsilon_j \text{ Chance Constraint} \\ \text{ where } \epsilon_i \text{ is the violation level} \end{split}$$

Robust MPC Problem

$$\begin{split} & \min_{\tilde{u}_{j,k}, \tilde{x}_{j,k} \in \tilde{\Theta}_{j}} \max_{J_{j}(\tilde{x}_{j,k}, \tilde{u}_{j,k}, \tilde{\theta}_{j,k}) \\ \text{subject to: } & \tilde{x}_{j,k} = \tilde{f}_{j}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \\ & \max_{l=1,...,N_{\mathrm{P}}} \max_{\tilde{\theta}_{j,k} \in \tilde{\Theta}_{j}} \hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \leq x_{\mathrm{max}} \text{ Robust Constraint} \end{split}$$

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

Stochastic Local MPC Problem

Chance-Constrained MPC Problem

$$\begin{split} \min_{\tilde{u}_{j,k}, \tilde{x}_{j,k}} \mathbb{E}_{\tilde{\theta}_{j,k}} [J_j(\tilde{x}_{j,k}, \tilde{u}_{j,k}, \tilde{\theta}_{j,k})] \\ \text{subject to: } \tilde{x}_{j,k} &= \tilde{f}_j(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \\ \mathbb{P}_{\tilde{\theta}_{j,k}} \left[\max_{l=1,\dots,N_{\mathrm{P}}} \hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \leq x_{\max} \right] \geq 1 - \epsilon_j \text{ Chance Constraint} \\ \text{ where } \epsilon_i \text{ is the violation level} \end{split}$$

Robust MPC Problem

$$\begin{split} \min_{\tilde{u}_{j,k}, \tilde{x}_{j,k}} \max_{\tilde{\theta}_{j,k} \in \tilde{\mathcal{O}}_j} J_j(\tilde{x}_{j,k}, \tilde{u}_{j,k}, \tilde{\theta}_{j,k}) \\ \text{subject to: } \tilde{x}_{j,k} &= \tilde{f}_j(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \\ \max_{l=1,\dots,N_{\mathrm{P}}} \max_{\tilde{\theta}_{j,k} \in \tilde{\mathcal{O}}_j} \hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}; x_{j,k}) \leq x_{\max} \text{ Robust Constraint} \end{split}$$

We choose chance-constrained MPC in order to avoid conservatism

Zhou Su (DCSC)

June 1 13 / 38

Scenario-based Approach

Scenario-based Approach

Approximate chance constraint by set of **deterministic constraints**: $\max_{l=1,...,N_{D}} \hat{x}_{j,k+l|k}^{con}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}^{(h)}; x_{j,k}) \leq x_{\max} \quad \forall h \in \mathcal{H}_{j}$

 \mathcal{H}_{j} : set of random scenarios for section j; $\tilde{\theta}_{i,k}^{(h)}$: realization of $\tilde{\theta}_{i,k}^{(h)}$ in scenario h

Remarks

• Sufficiently large $|\mathcal{H}_j|$ gives the **probabilistic guarantee**:

$$\mathbb{P}_{h}\left[\mathbb{P}_{\tilde{\theta}_{j,k}}\left[\max_{l=1,\ldots,N_{\mathbf{P}}}\hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k},\,\tilde{\theta}_{j,k};\,x_{j,k})\leq x_{\max}\right]\geq 1-\epsilon_{j}\right]\geq 1-\beta_{j}$$

- Integer decision variables \rightarrow non-convex chance-constrained MPC problem
- Existing bounds on $|\mathcal{H}_j|$ for non-convex chance-constrained problem are conservative

Scenario-based Approach

Scenario-based Approach

Approximate chance constraint by set of **deterministic constraints**: $\max_{l=1,...,N_{D}} \hat{x}_{j,k+l|k}^{con}(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}^{(h)}; x_{j,k}) \leq x_{\max} \quad \forall h \in \mathcal{H}_{j}$

 \mathcal{H}_{j} : set of random scenarios for section j; $\tilde{\theta}_{i,k}^{(h)}$: realization of $\tilde{\theta}_{i,k}^{(h)}$ in scenario h

Remarks

• Sufficiently large $|\mathcal{H}_j|$ gives the **probabilistic guarantee**:

$$\mathbb{P}_{h}\left[\mathbb{P}_{\tilde{\theta}_{j,k}}\left[\max_{l=1,...,N_{\mathbf{P}}} \hat{x}_{j,k+l|k}^{\mathrm{con}}(\tilde{u}_{j,k},\,\tilde{\theta}_{j,k};\,x_{j,k}) \leq x_{\max}\right] \geq 1-\epsilon_{j}\right] \geq 1-\beta_{j}$$

- Integer decision variables \rightarrow non-convex chance-constrained MPC problem
- Existing bounds on $|\mathcal{H}_j|$ for non-convex chance-constrained problem are conservative

We choose the two-stage approach from Margellos et al. (2014)

TUDelft

Zhou Su (DCSC)

Two-Stage Approach

 $\begin{array}{l} \mbox{Stage 1} \\ \mbox{Generate \mathcal{H}_j satisfying} \\ |\mathcal{H}_j| \geq \left\lceil \frac{1}{\epsilon_j} \cdot \frac{e}{e-1} \left(2|\tilde{\Theta}_j| - 1 + \ln \frac{1}{\beta_j} \right) \right\rceil \\ \mbox{and solve the convex scenario-based optimization problem} \\ \\ \mbox{min} \sum_{\substack{\{(\underline{\tau}_i, \overline{\tau}_i)\}_{i=1}^{|\tilde{\Theta}_j|} \\ \overline{\tau}_i - \underline{\tau}_i} \\ \mbox{subject to: } (\tilde{\theta}_{j,k})_i^{(h)} \in [\underline{\tau}_i, \overline{\tau}_i] \quad \forall h \in \mathcal{H}, \forall i \in \{1, \dots, |\tilde{\Theta}_j|\} \\ \mbox{to obtain the smallest hyperbox $\mathcal{B}_{j,k}^{*,k}$ covering all scenarios in \mathcal{H}_j.} \end{array}$

Probabilistic Guarantee

$$\mathbb{P}_{h}\left[\mathbb{P}_{\tilde{\theta}_{j,k}}\left[\tilde{\theta}_{j,k}\in\mathcal{B}_{j,k}^{*}\right]\geq1-\epsilon_{j}\right]\geq1-\beta_{j}$$

TUDelft

			CC	0
7 hou	5111		((
		~		∽.

 \mathscr{O}

Two-Stage Approach

Remarks

- Less conservative than standard robust approach
- Tractability depends on the robust problem

Worst-Case Scenario

Worst-Case Scenario

• Define the worst-case scenario

$$\widetilde{j}_{j,k}^{(w)} \in rg\max_{\widetilde{ heta}_{j,k} \in \mathcal{B}_{j,k}^* \cap \widetilde{ heta}_j} \max_{l=1\dots N_{\mathrm{P}}} \widehat{x}_{j,k+l|k}^{\mathrm{con}}(\widetilde{u}_{j,k}, \, \widetilde{ heta}_{j,k}; \, x_{j,k})$$

• $\tilde{\theta}_{j,k}^{(w)}i$ is easy to obtain if $\hat{x}_{j,k+l|k}^{con}$ is concave w.r.t. $\tilde{\theta}_{j,k}$.

Worst-Case Scenario

Worst-Case Scenario

• Define the worst-case scenario

$$\widetilde{U}_{j,k}^{(w)} \in rgmax_{\widetilde{ heta}_{j,k} \cap \widetilde{ heta}_{j}} \max_{l=1\dots N_{\mathrm{P}}} \widehat{x}_{j,k+l|k}^{\mathrm{con}}(\widetilde{u}_{j,k}, \, \widetilde{ heta}_{j,k}; \, x_{j,k})$$

• $\tilde{\theta}_{j,k}^{(w)}i$ is easy to obtain if $\hat{x}_{j,k+l|k}^{\mathrm{con}}$ is concave w.r.t. $\tilde{\theta}_{j,k}$.

Sufficient Condition on Concavity

For
$$f_j(x_{j,k}, u_{j,k}, \theta_{j,k}) = \begin{bmatrix} f_j^{\text{con}}(x_{j,k}, u_{j,k}, \theta_{j,k}) \\ f_j^{\text{aux}}(x_{j,k}, u_{j,k}, \theta_{j,k}) \end{bmatrix}$$
, if f_j^{con} and f_j^{aux} are

- concave in $\tilde{\theta}_{j,k}$
- concave and non-decreasing in every dimension of x_{j,k}

then
$$\hat{x}_{j,k+l|k}^{\text{con}}$$
 is concave in $\tilde{\theta}_{j,k}$ for any $l = 1, \dots, N_{\text{p}}$.

TUDelft

Zhou Su (DCSC)

Scenario-based Robust MPC

Deterministic MPC Problem

$$\begin{split} \min_{\tilde{u}_{j,k}, \tilde{x}_{j,k}^{(h)}} \frac{1}{|\mathcal{H}_j|} \sum_{h \in \mathcal{H}_j} J_j(\tilde{x}_{j,k}^{(h)}, \tilde{u}_{j,k}) \\ \text{subject to: } P_j \tilde{x}_{j,k}^{(w)} \leq x_{\max} \quad \forall w \in \mathcal{W}_j \\ \underbrace{\tilde{x}_{j,k}^{(s)} = \tilde{f}_j(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}^{(s)}; x_{j,k})}_{\text{Deterministic prediction model for scenario s}} \quad \forall s \in \mathcal{H}_j \cup \{\tilde{\theta}_{j,k}^{(w)}\} \end{split}$$

Scenario-based Robust MPC

Deterministic MPC Problem

$$\begin{split} \min_{\tilde{u}_{j,k}, \tilde{x}_{j,k}^{(h)}} \frac{1}{|\mathcal{H}_j|} \sum_{h \in \mathcal{H}_j} J_j(\tilde{x}_{j,k}^{(h)}, \tilde{u}_{j,k}) \\ \text{subject to: } P_j \tilde{x}_{j,k}^{(w)} \le x_{\max} \quad \forall w \in \mathcal{W}_j \\ \tilde{x}_{j,k}^{(s)} = \tilde{f}_j(\tilde{u}_{j,k}, \tilde{\theta}_{j,k}^{(s)}; x_{j,k}) \qquad \forall s \in \mathcal{H}_j \cup \{\tilde{\theta}_{j,k}^{(w)}\} \\ \end{split}$$

Remark

- Original stochastic dynamics is replaced by a set of deterministic dynamics
- Each deterministic dynamics follows a distinctive sequence of realizations of uncertainties

We still need to deal with hybrid dynamics

Frameworks for Hybrid MPC

MLD-MPC

- Optimizes a sequence of **discrete** control inputs
- Mixed integer programming problem

- Optimizes continuous time instants at which each intervention takes place
- Time instants rounded to nearest steps
- Non-smooth continuous optimization problem

″uDelft

Zhou Su (DCSC)

LCCC Focus Period

Centralized MPC Problem

Centralized MLD-MPC Problem

 $\min_{\tilde{\delta}_k, \tilde{z}_k} \sum_{i=1}^n c_{j,1}^{\mathrm{T}} \tilde{\delta}_{j,k} + c_{j,2}^{\mathrm{T}} \tilde{z}_{j,k} \text{ Summation of local objective functions}$ subject to: $\sum_{j=1}^{n} R_j \tilde{\delta}_{j,k} \leq r$ Global linear constraints on resources $F_{i,1}\tilde{\delta}_{i,k} + F_{i,2}\tilde{z}_{i,k} < I_i \quad \forall i \in \{1, \dots, n\}$ Local constraints $\tilde{\delta}_k \in \overset{n}{\times} \{0, 1\}^{n_{\tilde{\delta}_j}}$ Binary variables i=1 $ilde{z}_k \in \bigwedge^n ilde{\mathcal{Z}}_j \subset \bigwedge^n \mathbb{R}^{n_{ ilde{z}_j}}$ Continuous variables i=1

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

June 1 20 / 3

Remark on Complexity

Scenario-based Deterioration Model

$$\begin{aligned} x_{j,k+1}^{(s)} &= f_j(x_{j,k}, \ u_{j,k}, \ \theta_{j,k}^{(s)}) \\ &= \begin{cases} f_j^1(x_{j,k}, \ \theta_{j,k}^{(s)}) & \text{if } u_{j,k} = 1 \\ f_j^q(x_{j,k}, \ \theta_{j,k}^{(s)}) & \text{if } u_{j,k} = q \quad \forall q \in \{2, \dots, N-1\} \\ f_j^N(\theta_{j,k}^{(s)}) & \text{if } u_{j,k} = N \end{cases} \end{aligned}$$

Size of Centralized MLD-MPC Problem

- Linear dynamics
 - # binary variables \propto # sections
- Piecewise-affine dynamics
 - # binary variables \propto # sections & # scenarios

Distributed Optimization

Motivation

Centralized problem is intractable for large-scale networks with high-dimensional uncertainties

hou Su (DCSC)

LCCC Focus Period

June 1 22 / 3

Distributed Optimization

Motivation

Centralized problem is intractable for large-scale networks with high-dimensional uncertainties

Decomposition Methods

- The centralized problem is only coupled by global constraints
- Dantzig-Wolfe Decomposition

LCCC Focus Period

Dantzig-Wolfe Decomposition

Basic Idea

- Define $\mathcal{P}_{j,k} = \{(\tilde{\delta}_{j,k}, \tilde{z}_{j,k}) \in \{0, 1\}^{n_{\tilde{\delta}_j}} \times \tilde{\mathcal{Z}}_j : F_{j,1}\tilde{\delta}_{j,k} + F_{j,2}\tilde{z}_{j,k} \leq l_j\}$ as the local feasible region for section j
- Define generating set G_{j,k} containing extreme points (columns) of Conv(P_{j,k})
- (Minkowski's Theorem) Each point in $Conv(\mathcal{P}_{j,k})$ can be written as a convex combination of columns $g \in \mathcal{G}_{j,k}$

Dantzig-Wolfe Reformulation

Dantzig-Wolfe Reformulation

$$\begin{split} & \min_{\boldsymbol{\mu}} \sum_{j=1}^{n} \sum_{g \in \mathcal{G}_{j,k}} (c_{j,1} \tilde{\delta}_{j,k}^{[g]} + c_{j,2} \tilde{z}_{j,k}^{[g]}) \boldsymbol{\mu}_{j,g} \\ & \text{subject to:} \quad \sum_{j=1}^{n} \sum_{g \in \mathcal{G}_{j}} (R_{j} \tilde{\delta}_{j,k}^{[g]}) \boldsymbol{\mu}_{j,g} \leq r \text{ Global constraint} \\ & \sum_{g \in \mathcal{G}_{j}} \boldsymbol{\mu}_{j,g} = 1 \quad \forall j \in \{1, \dots, n\} \text{ Convexity constraints} \\ & \boldsymbol{\mu}_{j,g} \in \{0, 1\} \quad \forall g \in \mathcal{G}_{j,k}, \forall j \in \{1, \dots, n\} \text{ Binary condition} \end{split}$$

Dantzig-Wolfe Reformulation

Dantzig-Wolfe Reformulation

$$\begin{split} & \min_{\boldsymbol{\mu}} \sum_{j=1}^{n} \sum_{g \in \mathcal{G}_{j,k}} (c_{j,1} \tilde{\delta}_{j,k}^{[g]} + c_{j,2} \tilde{z}_{j,k}^{[g]}) \boldsymbol{\mu}_{j,g} \\ & \text{subject to:} \ \sum_{j=1}^{n} \sum_{g \in \mathcal{G}_{j}} (R_{j} \tilde{\delta}_{j,k}^{[g]}) \boldsymbol{\mu}_{j,g} \leq r \text{ Global constraint} \\ & \sum_{g \in \mathcal{G}_{j}} \boldsymbol{\mu}_{j,g} = 1 \quad \forall j \in \{1, \dots, n\} \text{ Convexity constraints} \\ & \boldsymbol{\mu}_{j,g} \in \{0, 1\} \quad \forall g \in \mathcal{G}_{j,k}, \forall j \in \{1, \dots, n\} \text{ Binary condition} \end{split}$$

Remarks

- Reformulation is equivalent
- Master problem: linear relaxation of Dantzig-Wolfe reformulation
- Generating set G_{j,k} can be huge

TUDelft

Zhou Su (DCSC)

Restricted Master Problem

- Master problem with partial generating sets G^s_{j,k} ⊂ G_{j,k}
- Linear programming problem
- Its dual gives the shadow prices

Subproblem

- Pricing problem giving the most "attractive" column
- MILP
- Its optimum gives the reduced cost

Restricted Master Problem

- Master problem with partial generating sets G^s_{j,k} ⊂ G_{j,k}
- Linear programming problem
- Its dual gives the shadow prices

Subproblem

- Pricing problem giving the most "attractive" column
- MILP
- Its optimum gives the reduced cost

Column generation terminates when all reduced costs are 0

Bounds

- Upper & Lower bounds can be used to accelerate the procedure
- Binary solution of restricted master problem \rightarrow upper bound
- Lagrangian dual function of centralized MPC problem ightarrow lower bound

Bounds

- Upper & Lower bounds can be used to accelerate the procedure
- Binary solution of restricted master problem \rightarrow upper bound
- Lagrangian dual function of centralized MPC problem ightarrow lower bound

Solution Quality

- Upper bound =Lower bounds: exact solution of Dantzig-Wolfe reformulation
- Fractional solution with zero reduced costs
 - Solve restricted master problem as an integer programming problem with resulting partial generating sets
 - Suboptimal solution

Background

2 Multilevel Maintenance Planning High-Level Problem Low-Level Problem

3 Case Study

4 Conclusions & Future Work

ou Su (DCSC)

LCCC Focus Period

June 1 27 / 3

Problem Description

Preliminaries

- Base: storage place of machinery
- Maintenance operation: one round tour of maintenance crew
- One operation per time period
- One time budget per period
- An estimated maintenance time for each line can be obtained from high level

Goal

- Optimal schedule for the maintenance crew
- Minimize setup costs & total travel costs

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

June 1 28 / 3

Physical Network to Virtual Graph

Transformation

Railway Network	Undirected Graph
Maintenance base	Depot
Lines to be maintained	Required edges
Estimated maintenance time	Edge demand
Time period	Virtual vehicle
Maintenance time budget	Vehicle capacity
Setup cost per operation	Fixed costs per vehicle
Line length	Travel cost

Arc Routing Problem

Capacitated Arc Routing Problem with Fixed Costs (CARPFC)

Finding optimal set of routes for a fleet of vehicles

- Minimize fixed setup costs & travel costs
- Cover all required edges
- Satisfy demands
- Not exceed vehicle capacity

Settings

- Periods with same time budget & setup costs ightarrow Homogeneous CARPFC
- Periods with different time budget & setup costs ightarrow Heterogeneous CARPFC

Solution Approach

- Transformation into equivalent node routing problems
- # nodes (new graph) = 2 \times # required edges

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

June 1 30 / 3

Background

2 Multilevel Maintenance Planning High-Level Problem Low-Level Problem

3 Case Study

4 Conclusions & Future Work

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

June 1 31 / 3

Case Study: Treatment of Ballast Defects

Deterioration Model

$$\begin{aligned} x_{j,k+1}^{\text{con}} &= \begin{cases} a_j x_{j,k} & \text{if } u_{j,k} = 1 \text{ No maintenance} \\ x_{j,k}^{\text{aux}} & \text{if } u_{j,k} = 2 \text{ Tamping} \\ \underline{x} & \text{if } u_{j,k} = 3 \text{ Renewal} \end{cases} \\ x_{j,k+1}^{\text{aux}} & \text{if } u_{j,k} = 1 \text{ No maintenance} \\ x_{j,k}^{\text{aux}} + \alpha_j & \text{if } u_{j,k} = 2 \text{ Tamping} \\ \underline{x} & \text{if } u_{j,k} = 3 \text{ Renewal} \end{cases} \\ \theta_{j,k} = [a_j \alpha_j]^{\text{T}} \end{aligned}$$

< • > < < > >

Settings

Sampling time: 3 months Prediction & Control horizon: 6 steps (18 months)

TUDelft

	(DCCC)
hou Su I	
nou su j	

Settings Low Level

Physical Network

- Part of Dutch railway network including Randstadt Zuid and the middle-south region
- Each line divided into 5-km section
- 13 lines, 53 sections
- A line is to be tamped if any section of it is suggested by the high-level controller

Time Periods for Tamping

- One long period (6 h), two short periods (4 h)
- 120 kEuro for long period, 100 kEuro for short period

″uDelft

		0.00	
/hou	SIL (1)(5	(C))
	u 1		

Simulation Results: High Level

- x: condition
- *u*: maintenance option (1 for no maintenance, 2 for tamping, 3 for ballast renewal)

TUDelft

Zhou Su (DCSC)

LCCC Focus Period

June 1 34 / 3

Simulation Results: Low Level

$\begin{array}{l} \textbf{Optimal Routes} \\ 0 \rightarrow 6 \Rightarrow 8 \rightarrow 6 \rightarrow 5 \rightarrow 7 \Rightarrow 5 \rightarrow 3 \rightarrow 4 \Rightarrow 3 \rightarrow 4 \rightarrow 2 \Rightarrow 4 \rightarrow 6 \rightarrow 0 \end{array}$

TUDelft

		< □ >	< @ ►	₹	<= ≣ >	÷.	୬ଏ୯
Zhou Su (DCSC)	LCCC Focus Period				June	1	35 / 38

Comparison with Centralized MPC

CPU Time

Settings

- Desktop computer with Quad Core CPU and 64 GB RAM
- Matlab 2016B on SUSE Linux Enterprise Desktop 12
- CPLEX 12.7 as MILP & LP solver

Background

2 Multilevel Maintenance Planning High-Level Problem Low-Level Problem

3 Case Study

4 Conclusions & Future Work

hou Su (DCSC)

LCCC Focus Period

June 1 37 / 3

Conclusions & Future Work

Conclusions

- Integrated multi-level approach for track maintenance planning
- Tractable, robust and scalable

Future work

- Improved Dantzig-Wolfe decomposition
- Comparison with other distributed optimization method for MILP

