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My current research interests 
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• Privacy and security of cyber-physical systems: 

- Input-and-state observability (this talk) 

- Counting nodes in anonymous networks 
 

• Urban traffic networks: 

distributed optimization of traffic lights 
 

• Game theory (potential games):  

 distributed algorithms to find Nash Equilibrium 
 
 



Outline 
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Part 1: Structural observability  

(classical results) 

 

Part 2: Structural input-and-state observability  

(joint work with Alain Kibangou and Sebin Gracy) 
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Network dynamical systems 
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Local states                   

Network state = vector collecting all local states 
 

Local dynamics + interactions with some other states 

       a (linear) system 
 

 

 

Network dynamical systems – in this talk 

Greenhouse 

irrigation 

Multi-robot 

coordination 

Smart  

grids 
Social networks 

Intelligent  

transportation systems 
Biological networks 
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Observability 

5 

Classical algebraic conditions (1960-70’s) 
 

 

 

 

 

 

 

Kalman : 

 

 

 

 

 

PBH: 

 

 

 

 

is observable if and only if: 

has full column rank 

has full column rank 
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By measuring only few local states (for some time),  

 can we reconstruct the whole network state? 



Graphical conditions (1980’s + recent interest) 
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Not all states directly affect each other 

Non-zero entries of system matrices  ↔  edges in network graph 
 
 



Graphical conditions: structured systems (2) 
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• Seminal paper:  

C.T. Lin, Structural controllability, IEEE Tr. Aut. Contr., 1974 
 

• Works in the 70-80’s 
See books by Murota (1987, 2000), Reinschke (1998), and survey 

paper by Dion, Commault, van der Woude (Automatica 2003) 
 

• Recent revival in the context of network systems 
 

A very popular paper (1400 citations):  

Y. Y. Liu, J. J. Slotine and A. L. Barabasi,  

Controllability of complex networks, Nature, 2011 
 

Many recent works in the automatic control community  

and in the complex networks community  

(computer science, physics) 
 



Structured systems – definition 

8 Federica Garin – Input-and-state observability of network systems 

Non-zero entries of A, C  

are free parameters 

Generic results = true for almost all parameters 
 

Almost all = except a proper subvariety of the param. space 
 

If parameters are random, indep., continuous distribution:  

 Almost all = with prob. 1 



Small detour: generic rank – examples 
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has generic rank 2: 

it is non-singular, except when 

has generic rank 2; 

moreover, it has rank 2 

for all non-zero parameters 

has generic rank 1 



Small detour: generic rank – characterization 
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Generic rank = size of maximum matching in bipartite graph 

Bipartite graph 
 

Left vertex set = columns 

Right vertex set = rows 

 

generic rank = 3 



Structured systems – digraph 
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Non-zero entries of  A, C  ↔  edges in digraph 
 
 



Observability of structured systems (1) 
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Proposition 
[R.W. Shields, J.B. Pearson, Structural controllability  

of multi-input linear systems, IEEE Tr. Aut. Contr., 1976] 
 

If there exists one choice of free parameters  

for which (A, C) is observable, 

then (A, C) is generically observable. 

I.e., for a given digraph, 

either the system is observable for almost all parameters, 

or it can’t be observable, for any parameter choice. 

Same for controllability, but not for all properties, 

e.g., not for stability 



Observability of structured systems (2) 
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Theorem 
[C.T. Lin, Structural controllability, IEEE Tr. Aut. Contr., 1974 +             

K. Murota, Systems analysis by graphs and matroids, 1987] 

 

(A, C) is generically observable iff 
 

i)  Digraph is output-connected 

 (from every state vertex there is a path to an output vertex) 
 

ii) Rank condition: 
 

 

 

 

generically has full column rank 



Equivalent versions of the rank condition (1) 
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generically has full column rank iff 

Bipartite graph                        

 

 

has a matching of size #X 

Remark 
 

If A has non-zero diagonal, 

rank condition is always true! 



Equivalent versions of the rank condition (2) 

15 Federica Garin – Input-and-state observability of network systems 

In digraph  
 

state vertices X are spanned  

by a collection of disjoint  

cycles and paths to output 

generically has full column rank iff 



Equivalent versions of the rank condition (3) 
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generically has full column rank iff 

Digraph                     has no contraction:  

for all set of state vertices S     X, 

its set of out-neighbors E(S) has #E(S) ≥ #S 

For example 

 



Other classical results on observability... 
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• Structural observability = generically observable  

       (for almost all parameters) 

  Strong structural observability = for all non-zero parameters 

  Characterizations of strong structural observability 

  with uniquely restricted matchings, or zero-forcing sets 

 

• LTV systems with constant graph: 

same characterization as corresponding LTI system 

 

• LTV systems with varying graph: 

  a characterization of structural observability  

  with “dynamic graph” 



Structural input-and-state observability 
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On-going work, with Sebin Gracy  and Alain Kibangou 
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Motivation:    cyber-physical security 

 What if an attacker injects an input in the system? 

Other motivation: input can represent a fault 



Input-and-state observability (ISO) – definition 
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• Strong observability: despite presence of unknown input u, 

can reconstruct initial state x(0) from outputs y(0), …, y(n) 
 

• Delay-L left invertibility:  

can reconstruct input u(0) from x(0), y(0), …, y(L) 
 

• Left invertibility (delay-L left inv. for some L ≤ n): 

can reconstruct input u(0) from x(0), y(0), …, y(n) 
 

• Input-and-state observability (ISO) (strong obs + left inv): 

can reconstruct x(0), u(0) from y(0), …, y(n) 
 

• Delay-1 ISO (ISO + delay-1 left inv.):  

can reconstruct x(0), u(0), …, u(n-1) from y(0), …, y(n) 

 
 



ISO – algebraic characterization (classical) 
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• PBH-like test:   ISO iff 

 

 

 

 

• Delay-1 left inv. iff  

 

 

 

 

 

The two together give delay-1 ISO 

has full column rank 



Delay-1 ISO as observability of a subsystem 
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Assumption on matrices B, C, D: 
 

- Each input acts on a single state  

 (columns of B have a single non-zero element, 

 input vertices have out-degree 1); 

- Each output measures a single state 

 (rows of C have a single non-zero element, 

 output vertices have in-degree 1); 

- D = 0 (no edge from U to Y). 

 

 



Delay-1 ISO as observability of a subsystem 
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 Under our assumption on B, C, D 

 
 

Necessary condition for delay-1 ISO: 
 

All attacked sates (i.e., affected by an input) are measured 
 

 

Proof: from characterization of delay-1 left inv. (in case D = 0) 

  CB full column rank 

 



Delay-1 ISO as observability of a subsystem (2) 
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Under assumption on B, C, D + all attacked states are observed 
 

System decomposition 

 Relabel vertices to put attacked states first:   
 

 for i = 1, …, #U, 
 

  
 



Delay-1 ISO as observability of a subsystem (3) 
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Proof: from PBH-like characterization 
 

Same result also for LTV (constant B, C), more tricky proof 

Theorem 
 

 Under our assumption on B, C, D, 
 

Delay-1 ISO iff  
 

- All attacked states are measured 
 

- Subsystem                is observable 
   (subsystem without inputs, attacked states  

   and corresponding outputs)  



Delay-1 ISO as observability of a subsystem (4) 
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Corollary 
Under our assumption on B, C, D, 
 

Generically delay-1 ISO iff  
 

- All attacked states are measured,  

- Subsystem  
 

a) Bipartite graph has a matching 

of size #X-#U 

b) Digraph is output-connected 

We can characterize generic delay-1 ISO using  

known characterization of structural observability   

And more: strongly-structural (for all non-zero param), LTV 



Structural ISO (no assumptions on B, C, D) 
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Theorem  [Based on Boukhobza et al, State and input observability for 

structured linear systems: A graph-theoretic approach, Automatica, 2007] 
 

Generically ISO iff 
 

a) Bipartite graph                      has a matching of size #U+#X 

 

  
 

b) In  

 from every non-essential state vertex there is a path to an 

output vertex, with no essential vertex in the path 

Proposition     If there exists one choice of free parameters 

s.t. (A, B, C, D) is ISO, then (A, B, C, D) is generically ISO. 



Essential vertices 
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Linking from U to Y =  

set of vertex-disjoint paths  

from U to Y 
 

Size of a linking = # paths 

Essential vertices  

= vertices present in all  

 maximum linkings 

= union of all minimum  

 vertex separators 

Remark:   under a), size of max-linking = # U 



Structural ISO – Example  

28 Federica Garin – Input-and-state observability of network systems 

a) Bipartite graph 

has a matching of size #U+#X 

 
b) In digraph, from every non-

essential state vertex there is a 

path to an output vertex, with no 

essential vertex in the path 



Structural delay-1 left invertibility 
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Proposition 
 

If D= 0, if there exists one choice of free parameters for which  

(A, B, C, D) is delay-1 left inv, 

then (A, B, C, D) is generically ISO delay-1 left inv. 

For general D, for a given digraph, 

either the system is delay-1 left inv for almost all parameters,  

or it is not delay-1 left inv for almost all parameters 
(but there might be few parameters for which it is) 

I.e., when D=0, for a given digraph, 

either the system is delay-1 left inv for almost all parameters, 

or it can’t be delay-1 left inv, for any parameter choice. 



Structural delay-1 left invertibility (2) 
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Theorem 
 

Generically delay-1 left inv. iff 

Exists linking of size #U + r  from                to               

in: 

 

 

 

 

 
 

r = generic rank (D)  

 = size of max matching in  

 



Structural delay-1 left invertibility – Example 
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r = generic rank (D) = 1 

Generically delay-1 left inv: 

Exists linking  

from                to  

of size #U + r  = 4 



Structural delay-1 left invertibility – Example 2 
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r = generic rank (D) = 1 

Not generically delay-1 left inv: 

size of max linking = 2 < #U + r 

But if                and 

  

it is delay-1 left inv. 



Conclusion 
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This talk 

• Structural systems: generic results, depending only on zero 

pattern, true for almost all paramenters 

• Classical characterization of structural observability 

• Recent results on structural ISO (with delay 1) 

 

Current work on structural ISO 

• LTV 

• Strong structural (for all non-zero parameters) 

• Delay-L left inv.  

 

Future work 

• Other notions related to attack detection 

• Distributed algorithms for ISO or other defense from attacks 


