
Distributed Robustness Analysis

Anders Hansson

Division of Automatic Control
Linköping University

June 16, 2017

Outline

Robustness Analysis

Chordal Sparsity in Semidefinite Programming

Domain- and Range-Space Decomposition

Domain-Space Decomposition Revisited

Interior-Point Methods

Summary

Proximal Splitting Methods

Robustness Analysis

Consider the following uncertain system,

p = Gq, q = ∆(p), (1)

where G ∈ RHp×m
∞ is a transfer function matrix, and

∆ : Lp2 → Lm2 is a bounded and causal operator.

The uncertain system in (1) is said to be robustly stable if the
interconnection between G and ∆ remains stable for all ∆ in some
class.

Integral Quadratic Constraints

Let ∆ : Lp2 → Lm2 be a bounded and causal operator. This operator
is said to satisfy the IQC defined by Π, i.e., ∆ ∈ IQC(Π), if∫ ∞

0

[
v

∆(v)

]T
Π

[
v

∆(v)

]
dt ≥ 0, ∀v ∈ Lp2 , (2)

where Π is a bounded and self-adjoint operator. Assuming that Π
is linear time-invariant and has a transfer function matrix
representation, the IQC in (2) can be written in the frequency
domain as ∫ ∞

−∞

[
v̂(jω)

∆̂(v)(jω)

]∗
Π(jω)

[
v̂(jω)

∆̂(v)(jω)

]
dω ≥ 0, (3)

where v̂ and ∆̂(v) are the Fourier transforms of the signals

Stability Theorem

Theorem (IQC analysis)

The uncertain system in (1) is robustly stable, if

1. for all τ ∈ [0, 1] the interconnection described in (1), with
τ∆, is well-posed;

2. for all τ ∈ [0, 1], τ∆ ∈ IQC(Π);

3. there exists ε > 0 such that

[
G (jω)

I

]∗
Π(jω)

[
G (jω)

I

]
� −εI , ∀ω ∈ [0,∞]. (4)

Proof.
See Megretski and Rantzer, 1997.

Example

If ∆ is a linear operator, i.e. q = ∆p, where ∆ = δI , δ ∈ [−1, 1],
then

Π(jω) =

[
X (jω) Y (jω)
Y (jω)∗ −X (jω)

]
where X (jω) = X (jω)∗ � 0 and Y (jω) = −Y (jω)∗.

Typically Π is parameterized with basis functions.

Collection of Uncertain Systems

Consider a collection of uncertain systems:

pi = G i
pqq

i + G i
pww

i

z i = G i
zqq

i + G i
zww

i

qi = ∆i (pi),

(5)

and let p = (p1, . . . , pN), q = (q1, . . . , qN), w = (w1, . . . ,wN)
and z = (z1, . . . , zN).

Interconnection of Uncertain Systems


w1

w2

...
wN


︸ ︷︷ ︸

w

=


Γ11 Γ12 · · · Γ1N

Γ21 Γ22 · · · Γ2N
...

...
. . .

...
ΓN1 ΓN2 · · · ΓNN


︸ ︷︷ ︸

Γ


z1

z2

...
zN


︸ ︷︷ ︸

z

(6)

Each of the blocks Γij are 0-1 matrices.

Interconnected uncertain system:

p = Gpqq + Gpww

z = Gzqq + Gzww

q = ∆(p)

w = Γz ,

(7)

where G?• = diag(G 1
?•, . . . ,G

N
?•) and ∆ = diag(∆1, . . . ,∆N).

Lumped Formulation

Eliminate w :

p = Ḡq, q = ∆(p), (8)

where Ḡ = Gpq + Gpw (I − ΓGzw)−1ΓGzq.

The interconnected uncertain system is robustly stable if there
exists a matrix Π̄ such that[

Ḡ (jω)
I

]∗
Π̄(jω)

[
Ḡ (jω)

I

]
� −εI , ∀ω ∈ [0,∞], (9)

for some ε > 0. LMI is dense.

Sparse Formulation

Theorem
Let ∆ ∈ IQC(Π̄). If there exist Π̄ and X = xI � 0 such that


Gpq Gpw

Gzq Gzw

I 0
0 I


∗ 

Π̄11 0 Π̄12 0
0 −ΓTXΓ 0 ΓTX

Π̄21 0 Π̄22 0
0 XΓ 0 −X



Gpq Gpw

Gzq Gzw

I 0
0 I

 � −εI , (10)

for ε > 0 and for all ω ∈ [0,∞], then the interconnected uncertain
system in (7) is robustly stable.

Sparsity in SDPs

General SDP (new definition of x):

minimize
S ,x

cT x (11a)

subject to F 0 +
m∑
i=1

xiF
i + S = 0, S � 0. (11b)

with S ∈ Sn, x ∈ Rm, c ∈ Rm and F i ∈ Sn for i = 0, . . . ,m.

Slack variable S inherits sparsity pattern from problem data.

Solvers like DSDP (Benson and Ye, 2005) and and SMCP
(Andersen, Dahl and Vandenberghe, 2010) make use of this
structure.

Chain of Uncertain Systems

240 Paper D Robust Stability Analysis of Sparsely Interconnected Uncertain Systems

G1(s) G2(s) GN (s)

δ1 δ2 δN

p1 q1

z1

z2
1

p2 q2

z2
2

z3
1

pN qN

zN−1
2

zN
· · ·

Figure 1: A chain of N uncertain subsystem.

5.1 Chain of Uncertain Systems

Consider a chain of N uncertain subsystems where each of the subsystems is
defined as in (6). We represent the uncertainty in each of the subsystems using
scalar uncertain parameters δ1, . . . , δN which correspond to parametric uncertain-
ties in different subsystems. The chain of uncertain systems is shown in Figure 1.
The gains are assumed to be within the normalized interval [−1, 1]. The inputs
and outputs of the subsystems are denoted by wi and zi , respectively, where
wi , zi ∈ R2 for 1 < i < N , and wi , zi ∈ R for i = 1, N . The interconnections in the
network are defined as wi2 = zi+1

1 and wi1 = zi−1
2 for 1 < i < N , and as w1 = z2

1 and
wN = zN−1

2 for the remaining subsystems in the chain, see Figure 1. Consequently,
the interconnection matrix Γ for this network is given by the nonzero blocks

Γi,i−1 = Γ Ti−1,i for i = 2, . . . , N , where Γi,i−1 = Γ Ti−1,i =
[
0 1
0 0

]
, i = 3, . . . , N − 1, and

Γ21 = Γ T12 = (1, 0), ΓN−1,N = Γ TN,N−1 = (0, 1). Given the uncertainty in each of the

subsystems, we have δi ∈ IQC(Πi) for i = 1, . . . , N , where Πi =
[
ri(jω) 0

0 −ri(jω)

]
,

and ri(jω) ≥ 0, (Megretski and Rantzer, 1997). We choose the scaling matrix
in (13) to be of form X = xI . Note that analyzing the lumped system yields the
LMI in (10) of order N whereas the sparse LMI in (13) is of order 3N − 2. As a
result, for medium-sized networks, it may be computationally cheaper to solve
the dense LMI in (10), but for large and sparse networks, the sparse formulation
is generally much more tractable. In order to confirm this, we conduct a set of nu-
merical experiments where we compare the computation time required to solve
the lumped and sparse formulation of the analysis problem for different num-
ber of subsystems in the chain. The interconnected systems considered in these
experiments are chosen such that their robust stability can be established using
both sparse and lumped formulations of the analysis problem. Note that gener-
ating such systems are generally not straightforward. In this paper, we use the
following approach to generate such systems. Consider the interconnected sys-

tem description in (6) and (8), and assume that Gi?•(s) =
[
Ai?• Bi?•
C i?• D i

?•

]
, for i =

1, . . . , N , ? ∈ {p, z} and • ∈ {q, w}. This results in G?•(s) =
[
A?• B?•
C?• D?•

]
, where

Average CPU Time

0 20 40 60 80 100 120 140 160 180 200
10−2

10−1

100

101

102

103

N

C
P

U
ti

m
e

(s
ec

on
d

s)
SeDuMi (lumped)

SDPT3 (lumped)

DSDP (sparse)

SMCP (sparse)

Sparsity Graph

A sparsity pattern is a set E ⊆ {{i , j} | i , j ∈ {1, 2, . . . , n}}.

A matrix A ∈ Sn is said to have a sparsity pattern E if
Ai ,j = Aj ,i = 0, whenever i 6= j and {i , j} /∈ E , or equivalently
A ∈ Sn

E .

The graph G = (V ,E) with V = {1, 2, . . . , n} is called the sparsity
graph associated with the sparsity pattern.

Chordal Graphs and Sparsity Patterns

A =



x x x 0 0 0 0 0
x x x 0 0 0 0 0
x x x x x 0 0 0
0 0 x x x 0 0 0
0 0 x x x x ∗ x
0 0 0 0 x x x 0
0 0 0 0 ∗ x x x
0 0 0 0 x 0 x x



Cliques and Clique Trees

A maximal clique Ci is a maximal subset of V such that its
induced subgraph is complete.

A tree of maximal cliques for which Ci ∩ Cj for i 6= j is contained
in all the cliques on the path connecting Ci and Cj is said to have
the clique intersection property. (Always exists.)

Sparse Cholesky Factorization

A sparsity pattern E is chordal if and only if any positive definite
matrix A ∈ Sn

E has a Cholesky factorization PAPT = LDLT with

PT (L + LT)P ∈ Sn
E

for some permutation matrix P, which is related to the clique
intersection property.

After permutation sparse postive definite matrices with chordal
sparsity pattern have sparse Cholesky factorizations with no fill-in.

Test for Positive Semidefiniteness (Grone et al., 1984)

A partially specified matrix A ∈ Sn can be completed to a positive
semidefinite matrix if and only if

ACi
� 0

where Ci are the maximal cliques of the graph for the specified
entries. (ACi

denotes the sub-matrices obtained by picking out the
columns and rows indexed by Ci)

Example: 1 1/2 ?
1/2 1 1/3

? 1/3 1

 � 0⇔
[

1 1/2
1/2 1

]
� 0 &

[
1 1/3

1/3 1

]
� 0

Dual SDP

Primal problem again:

minimize
S ,x

cT x (12a)

subject to F 0 +
m∑
i=1

xiF
i + S = 0, S � 0. (12b)

with chordal S with cliques Cj , j = 1, . . . , p.

Dual SDP:

minimize
Z

trZF 0 (13a)

subject to trZF i = ci , i = 1, . . . ,m (13b)

Z � 0 (13c)

Domain-Space Decomposition (Fukuda et al., 2000)

Write F i =
∑p

j=1 EjF
i
j E

T
j with Ej containing columns of identity

matrix indexed by clique Cj . (Not unique)

Since trZF i =
∑p

j=1 tr ET
j ZEjF

i
j , equivalent dual problem is:

minimize
Z

p∑
j=1

trZCj
F 0
j (14a)

subject to

p∑
j=1

trZCj
F i
j = ci , i = 1, . . . ,m (14b)

ZCj
� 0 i = 1, . . . , p (14c)

Consensus Constraints

Equivalantly in decoupeled form:

minimize
Z

p∑
j=1

trZjF
0
j (15a)

subject to

p∑
j=1

trZjF
i
j = ci , i = 1, . . . ,m (15b)

Zj � 0, j = 1, . . . , p (15c)

ET
i ,j

(
EiZiE

T
i − EjZjE

T
j

)
Ei ,j = 0, (15d)

∀ i , j , where i are children of j in a clique tree with the clique
intersection property, and where j are all non-leaf nodes of the tree.
Ei ,j contains the columns of the identity matrix indexed by Ci ∩ Cj .

Range-Space Decomposition (Fukuda et al., 2000)
The dual of the previous problem is

minimize
x ,U

cT x (16a)

subject to F 0
j +

m∑
i=1

xiF
i
j + Gj(U) � 0 j = 1, . . . , p (16b)

where x ∈ Rm, with

Gj(U) = ET
k Ek,jUk,jE

T
k,jEk −

∑
i∈ch(j)

ET
j Ei ,jUi ,jE

T
i ,jEj

where Ui ,j ∈ S|Ci∩Cj |, and where k is the parent of j in the clique
tree. (For the root and for the leafs some of the terms are not
there)

Often the above LMIs are loosely coupled, i.e. many F i
j are zero.

Example

Find x = (x1, . . . , x4) such thatx1 x2 0
x2 x1 x3

0 x3 x4

 � 0

is equivalent to find (x , u) such that[
x1 x2

x2 x1 + u

]
� 0 &

[
−u x3

x3 x4

]
� 0

Can derive distributed Alternating Linearization Method (ALM) on
equivalent formulation of feasibility problem. (Details skipped)

Scale-Free Network

I Interconection of 500 subsystems over randomly generated
scale-free network, in this case a tree.

I 478 systems connected to 5 or less other systems
I 16 systems connected to less than 11 but more than 5 other

systems
I 6 system connected to more than 10 other systems

Scale-Free Network ctd.

I Lumped formulation: LMI of dimension 500 with 500 variables

I Sparse formulation: LMI of dimension 1498 with 1498
variables

I Chordal embedding has 579 cliques with 9894 variables

I Largest LMI has dimension 210 and 170 variables, but 94% of
them has dimension 50 or less

I The largest coupling between LMIs involves 92 variables, but
95% of them involve less than 24 variables.

I One of the agents require information from 52 other agents,
but 96 % of the agents only require information from at most
10 other agents.

Numerical Results

Solver Avg. CPU time [sec]

SDPT3 (lumped) 5640

SeDuMi (lumped) 2760

DSDP (sparse) 167

SMCP (sparse) 33

ALM (sparse) 1623

I ALM only prototyped in Matlab

I ALM can use paralell processors

I ALM respect privacy

Domain-Space Decomposition Revisited

Another equivalent formulation of the dual problem is:

minimize
Z ,Zj

p∑
j=1

trZjF
0
j (17a)

subject to

p∑
j=1

trZjF
i
j = ci , i = 1, . . . ,m (17b)

Zj � 0, j = 1, . . . , p (17c)

ET
j ZEj = Zj , j = 1, . . . , p (17d)

where we now have many more variables due to the additional
variable Z .

Remember that many F i
j are zero.

Search Directions for Interior-Point (IP) Methods

[
H AT

A 0

] [
∆z̄
∆x̄

]
=

[
r1
r2

]
where H and A are sparse. (z̄ vector of all elements of Z and Zi ,
i = 1, 2, . . . , p)

Equivalently the optimiality conditions of

minimize
∆z̄

1

2
∆z̄TH∆z̄ − rT1 ∆z̄ (18a)

subject to A∆z̄ = r2 (18b)

After Elimination of the Zj -variables

minimize
∆z̃

1

2
∆z̃T H̃∆z̃ − r̃T1 ∆z̃ (19a)

subject to Ã∆z̃ = r̃2 (19b)

which still has sparse data matrices.

Allmost separable

minimize
∆zi

1

2

p∑
i=1

∆z̃Ti H̃i∆z̃i − r̃T1,i∆z̃i (20a)

subject to
∑
j∈J̃i

Ãi ,j ∆z̃j = r̃2,i , i = 1, 2, . . . , p (20b)

where J̃i are small subsets of {1, 2, . . . , p}.

Equivalent unconstrained problem

minimize
∆z̃

p∑
i=1

Fi (∆z̃)

where

Fi (∆z̃) =
1

2
∆z̃Ti H̃i∆z̃i − r̃T1,i∆z̃i + IDi

(∆z̃)

with IDi
the indicator function for the set described by the ith

equality constraint.

Simple Example

minimize
x

F̄1(x1, x3) + F̄2(x1, x2, x4)+

F̄3(x4, x5) + F̄4(x3, x4) + F̄5(x3, x6, x7) + F̄6(x3, x8). (21)

Has sparsity graph (edge between vertices if components in same
term)

Clique Tree for Sparsity Graph

We now assign one computational agent for each clique, and we
may assign F̄i to an agent if and only if the indeces of its variables
belong to the corresponding clique. Hence we can assign F̄1 + F̄4

to C2, F̄2 to C1, F̄3 to C3, F̄5 to C4 and F̄6 to C5. (Not unique
assignment)

Message Passing or Dynamic Programming over Trees
Start with the leaves and compute for agents 3, 4, and 5

m31(x4) = min
x5

{
F̄3(x4, x5)

}
(22)

m42(x3) = min
x6,x7

{
F̄5(x3, x6, x7)

}
(23)

m52(x3) = min
x8

{
F̄6(x3, x8)

}
(24)

Then add the results from agents 4 and 5 to the functions of
Agent 2 and compute

m21(x1, x4) = min
x3

{
F̄1(x1, x3) + F̄4(x3, x4) + m42(x3) + m52(x3)

}
(25)

Finally add the results from agents 2 and 3 to the functions of
Agent 1 and compute

min
x1,x2,x4

{
F̄2(x1, x2, x4) + m31(x4) + m21(x1, x4)

}

Comments

I Not easy in general to compute messages or value functions
mi ,j .

I For linearly constrained convex quadratic problems the
messages are convex quadratic functions with equality
constraints.

I The dual variables can also be recovered.

I In fact results in a multi-frontal factorization technique for the
KKT saddle point problem.

Comments ctd.

I The cliques for the search directions of the dual problem
obtained using domain-space decomposition will not be the
same as the cliques in the domain-space decomposition itself.

I They can however be obtained by “merging” cliques, where
one clique might have to be merged with several others.

I All other computations in an IP algorithm also distribute over
the clique tree.

I In total 6 upward and 6 downward passes through the clique
tree, of which only one pass involves significant computations,
for each iteration in an IP algorithm

Chain of 100 Uncertain Systems

0 5 10 15
10−15

10−10

10−5

100

105

Iteration number

∥r
(k

)

p
ri

m
a
l∥+

∥s
v
ec

(R
(k

)

d
u
a
l)∥

2

0 5 10 15
10−15

10−10

10−5

100

105

Iteration number

µ

I 198 cliques
I Height of qlique tree 99
I Largest clique of dimension 8.
I Each agent computed a factorization 12 times and needed to

communicate with its neighbours 144 times.
I Dimension of marix to factorize was at most 62.
I Each agent had at most 2 neighbours.

The Scale-Free Network

0 5 10 15
10−15

10−10

10−5

100

105

Iteration number

∥r
(k

)

p
ri

m
a
l∥+

∥s
v
ec

(R
(k

)

d
u
a
l)∥

2

0 5 10 15
10−15

10−10

10−5

100

105

1010

Iteration number

µ

I 579 cliques
I Height of qlique tree 35
I Largest clique of dimension 162.
I Each agent computed a factorization 14 times and needed to

communicate with its neighbours 168 times.
I Dimension of marix to factorize was at most 5456.
I Each agent had at most 39 neighbours.

Summary

I Presented scalable distributed optimization algorithms that
respect privacy.

I However, distributed solutions more costly when implemented
centralized and especially so for second order methods.

I Robustness analysis has applications in power grids.

I Distributed localization of scattered sensor networks.

I Distributed predictiv control of platoons of vehicles.

I Distributed inertial motion capture

Acknowledgements

I Based on the thesis work by Sina Khoshfetrat Pakazad (LIU)

I Collaboration with Martin Andersen (DTU)and Anders
Rantzer (LU)

Publications
S. Khoshfetrat Pakazad, “Divide and Conquer: Distributed Optimization
and Robustness Analysis”, Linköping Studies in Science and Technology,
Dissertations, No 1676, 2015.

S. Khoshfetrat Pakazad, M. S. Andersen, and A. Hansson. “Distributed
soloutions for loosely coupled feasibility problems using proximal splitting
methods.”, Optimization Methods and Software, 30(1):128–161, 2015.

S. Khoshfetrat Pakazad, A. Hansson, M. S. Andersen, and I. Nielsen.
“Distributed primal-dual interior-point methods for solving tree-structured
coupled convex problems using message-passing”, Optimization Methods
and Software, DOI:10.1080/10556788.2016.1213839, 2016

M. S. Andersen, S. Khoshfetrat Pakazad, A. Hansson, and A. Rantzer,
“Robust stability analysis of sparsely interconnected uncertain systems”,
IEEE Transactions on Automatic Control, 59(8):2151–2156, 2014.

M, Kok, S. Khoshfetrat Pakazad, Th. B. Schön, A. Hansson, J. D. Hol,
“A Scalable and Distributed Solution to the Inertial Motion Capture
Problem”, arXiv:1603.06443, presented at Fusion, 2016.

S. Khoshfetrat Pakazad, E. Özkan, C. Fritsche, A. Hansson, and F.
Gustafsson, “Distributed Localization of Tree-Structured Scattered
Sensor Networks”, arXiv:1607.04798, 2016

Decomposition and Product Space Formulation

Feasibility problem from range-space decomposition can with
v = (x ,U) be phrased as

find v (26a)

subject to v ∈ Cj , j = 1, . . . , p, (26b)

where

Cj =

{
v
∣∣F 0

j +
m∑
i=1

xiF
i
j + Gj(U) � 0

}
Let

C̄j = {s j ∈ R|Jj | |ET
Jj s

j ∈ Ci}, j = 1, . . . , p, (27)

such that s j ∈ C̄j implies ET
Jj s

j ∈ Cj , where EJj are composed of
rows of the identity matrix indexed by the set Jj , which is the set
of i such that vi is constrained by Cj . Let Ii = {k |i ∈ Jk}, i.e. the
set of indeces of constraints, which depends on vi .

Example revisited

Find (x , u) = (x1, x2, x3, x4, u) such that[
x1 x2

x2 x1 + u

]
� 0 &

[
−u x3

x3 x4

]
� 0

Hence
J1 = {1, 2, 5}; J2 = {3, 4, 5}

and

I1 = {1}; I2 = {1}; I3 = {2}; I4 = {2}; I5 = {1, 2}

Product Space Formulation
Then (26) is equivalent to

find s1, s2, . . . , sp, v (28a)

subject to s i ∈ C̄i , i = 1, . . . , p (28b)

s i = EJi v , i = 1, . . . , p (28c)

or

find S

subject to S ∈ C, S ∈ D (29)

where

S = (s1, . . . , sp) ∈ R|J1| × · · · × R|Jp |

C = C̄1 × · · · × C̄p
D = {Ē v | v ∈ Rn}

Ē =
[
ET
J1
· · · ET

Jp

]T
.

Example revisited

find s1, s2, v (30a)

subject to s1 ∈
{
s1

∣∣∣∣ [s1
1 s1

2

s1
2 s1

1 + s1
3

]
� 0

}
, (30b)

s2 ∈
{
s2

∣∣∣∣ [−s2
3 s2

1

s2
1 s2

2

]
� 0

}
, (30c)

s1 =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 v (30d)

s2 =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 v (30e)

Convex Minimization Formulation

Consider

minimize
S

F (S) :=
1

2
‖S − PC(S)‖2 +

1

2
‖S − PD(S)‖2, (31)

where PC(S) is the projection of S on the set C and similarly for D.

This problem provides a solution to (29) if the optimal value is
zero. A non-zero optimal value proves that (29) is infeasible.

Splitting

We equivalently write the problem with x = S (new meaning of x)
as

minimize
x ,y

f1(x) + f2(y) (32a)

subject to x = y (32b)

where

f1(x) =
1

2
‖x − PC(x)‖2; f2(x) =

1

2
‖x − PD(x)‖2

Proximity Operator

Given a closed convex function f : Rn → R, then for every x ∈ Rn

the proximity operator of the function f , proxf : Rn → Rn is
defined as the unique minimizer of the following optimization
problem,

minimize
y

f (y) +
1

2
‖x − y‖2.

Alternating Linearization Methods

Algorithm 1 ALM

1: Given y (1)

2: for k = 1, 2 . . . do
3: x (k+1) = proxf1(y (k) −∇f2(y (k)))

4: y (k+1) = proxf2(x (k+1) −∇f1(x (k+1)))
5: end for

where

proxf1(x) =
x + PC(x)

2
; proxf2(x) =

x + PD(x)

2

and
∇f1(x) = x − PC(x); ∇f2(x) = x − PD(x)

Distributed Implementation
Since

(PC(x))i = PC̄i (x
i)

these projections can be distributed over p computatational agents.

Moreover

PD(x) = Ē
(
ĒT Ē

)−1
ĒT x

where ĒT Ē = diag(|Ii |). Thus for the example

(PD(x))1 =

1
1

1/2

 x1 +


1/2

 x2

(PD(x))2 =


1/2

 x1 +

1
1

1/2

 x2

and hence this projection requires information from neighboring
computational agents which have variables in common.

	Robustness Analysis
	Chordal Sparsity in Semidefinite Programming
	Domain- and Range-Space Decomposition
	Domain-Space Decomposition Revisited
	Interior-Point Methods
	Summary
	Proximal Splitting Methods

