
Analysis of Stochastic Optimization via
Jump Systems and Quadratic Constraints

Anders Rantzer

joint with Bin Hu and Peter Seiler

LCCC Linnaeus Center
Lund University

Sweden

Outline

◮ Integral Quadratic Constraints

◮ Jump Dynamic Systems

◮ Numerical Rate Bounds for Stochastic Algorithms

◮ Analytical Rate Bounds

◮ Conclusions

Integral Quadratic Constraint

∆ ✲✲ ∆vv

The (possibly nonlinear) operator ∆ on {m2 [0,∞) is said to
satisfy the IQC defined by Π if

∫ 2π

0

[
v̂(eiω)

(̂∆v)(eiω)

]∗

Π(eiω)

[
v̂(eiω)

(̂∆v)(eiω)

]
dω ≥ 0

for all v ∈ {2[0,∞).

Example

If � is L-smooth and m-strongly convex, then

[
x − x∗

∇�(x)

]T [
−2mLIp (m + L)Ip
(m + L)Ip −2Ip

] [
x − x∗

∇�(x)

]
≥ 0

For non-convex � the inequality can be used with negative m.

IQC Stability Theorem

G(z)

∆

❝
❝

✛✛

✲✲

❄

✻

Let G(s) be stable and proper and let ∆ be causal.

For all τ ∈ [0, 1], suppose the loop is well posed and τ ∆
satisfies the IQC defined by Π(eiω). If

[
G(eiω)

I

]∗
Π(eiω)

[
G(eiω)

I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.

Used by Lessard, Recht, Packard (2015) to analyse deterministic algorithms.

Outline

◮ Integral Quadratic Constraints

◮ Jump Dynamic Systems

◮ Numerical Rate Bounds for Stochastic Algorithms

◮ Analytical Rate Bounds

◮ Conclusions

A Jump Linear System

Suppose that i1, i2, . . . are identically, independently and
uniformly distributed in the finite set N = {1, ⋅ ⋅ ⋅ , n}. Then,
given matrix pairs (A1, B1), . . . , (An, Bn), the dynamic system

ξ k+1 = Aikξ
k + Bikw

k k ≥ 1

is called a jump linear system.

Jump Linear System with Nonlinear Feedback

Suppose that the nonlinear map ∆ : ξ → w satisfies

t∑

k=0

[Cξ k + Dwk]T M [Cξ k + Dwk] ≥ 0

for all solutions to ξ k+1 = Aikξ k + Bik ∆(ξ k), ξ 0 ∈ X0

Then

Eqξ kq2 ≤ ρ2kcond(P)qξ 0q2

provided that P ≻ 0 and

1
n

n∑

i=1

[
AT

i PAi − ρ2P AT
i PBi

BT
i PAi BT

i PBi

]
+
[
C D

]T M
[
C D

]
≺ 0

1

Outline

◮ Integral Quadratic Constraints

◮ Jump Dynamic Systems

◮ Numerical Rate Bounds for Stochastic Algorithms

◮ Analytical Rate Bounds

◮ Conclusions

Our Optimization Problem

Minimize

�(x) :=
1
n

n∑

i=1

fi(x)

where fi : Rp → R is L-smooth and � is m-strongly convex.

Empirical Risk Minimization

Many machine learning problems require optimizing an average
loss over a finite training set:

min
x∈Rp

�(x) :=
1
n

n∑

i=1

fi(x)

◮ Ridge regression:
fi(x) = (aT

i x − bi)
2 + m

2 qxq
2

◮ {2-regularized logistic regression:
fi(x) = log(1+ e−biaT

i x) + m
2 qxq

2

◮ {2-regularized loss minimization with loss function li(x):
fi(x) = li(x) + λ

2 qxq
2

Full Gradient Descent Method

◮ Gradient Descent Method

xk+1 = xk −α∇�(xk)

◮ Convergence is linear.

◮ Each iteration requires n computations:
∇�(xk) = 1

n
∑n

i=1∇ fi(xk)

Stochastic Gradient Method

◮ [Robbins and Monro, 1951] used the iteration rule

xk+1 = xk −α∇ fik(x
k)

where the index ik is randomly chosen for every k.

◮ Each iteration requires only one computation.

◮ With well-chosen constant step size, the method
converges linearly to some tolerance of the optimum.

Stochastic Average Gradient (SAG) Method

[Roux et al., 2012; Schmidt et al., 2013] use the iteration rule:

xk+1 = xk −
α
n

n∑

i=1

yk+1
i

where at each iteration a random ik is drawn and

yk+1
i :=

{
∇ fi(xk) if i = ik
yk

i otherwise

Let α = 1
16L . Then E[�(xk) − �(x∗)] ≤ C0

(
1−min{ 1

8n , m
16L}

)k.

Stochastic Finite-Sum Methods

◮ Now there is a large family of methods, e.g. SVRG, MISO,
Finito, SDCA, and SAGA. Analysis is done case-by-case.

◮ For example, SAGA (Defazio et al., 2014) uses

xk+1 = xk −α

(
∇ fik(x

k) − yk
ik
+

1
n

n∑

i=1

yk
i

)

yk+1
i =

{
∇ fi(xk) if i = ik
yk

i otherwise

◮ SAGA and SAG look very similar. But the analysis of SAG
is much more difficult! Why?

Finite-Sum Methods as Jump Systems

Finite-sum methods, e.g. SAGA, SAG, Finito, and SDCA, can
be modeled jump dynamic systems:

ξ k+1 = Aikξ
k + Bikw

k

wk =




∇ f1(Cξ k)

∇ f2(Cξ k)
...

∇ fn(Cξ k)




2

Finite-Sum Methods as Jump Systems

Choose Aik = Ãik ⊗ Ip, Bik = B̃ik ⊗ Ip, and C = C̃ ⊗ Ip where

Method Ãik B̃ik C̃

SAGA
[

In − eik eT
ik

0̃
−α

n (e− neik)
T 1

] [
eik eT

ik

−α eT
ik

]
[
0̃T 1

]

SAG
[

In − eik eT
ik

0̃
−α

n (e− eik)
T 1

] [
eik eT

ik

−α
n eT

ik

]
[
0̃T 1

]

Finito

[
In − eik eT

ik
0̃

−α (eik eT) In − eik(e
T
ik
− 1

n eT)

] [
eik eT

ik

0̃0̃T

] [
−α eT 1

n eT
]

SDCA In −α mneik eT
ik

−α mneik eT
ik

1
mn eT

Sparsity of Bik captures the low cost of stochastic methods.

Quadratic Contraints

If � is L-smooth and m-strongly convex, then

[
x − x∗

∇�(x)

]T [
−2mLIp (m + L)Ip
(m + L)Ip −2Ip

] [
x − x∗

∇�(x)

]
≥ 0

Assumptions on fi give
[

x − x∗

∇ fi(x) −∇ fi(x∗)

]T [2Lγ Ip (L − γ)Ip
(L − γ)Ip −2Ip

] [
x − x∗

∇ fi(x) −∇ fi(x∗)

]
≥ 0

LMI Conditions for Rate Analysis

◮ Numerically solving the analysis LMI

1
n

n∑

i=1

[
AT

i PAi − ρ2P AT
i PBi

BT
i PAi BT

i PBi

]
+
[
C D

]T M
[
C D

]
≺ 0

reveals opportunities and difficulties with different methods.

◮ After implementing the LMI once, one then only needs to
modify the (Ai, Bi, C) matrices for every new method.

Conclusions from Numerical Results

◮ For SAGA, the LMI is consistent with existing rate. It even
suggests that we can use a diagonal Lyapunov function.

◮ For Finito, the LMI requires that we use Lyapunov functions
with off-diagonal terms. Hence, we can tell in the early
stage of our analysis that Finito is significantly more
difficult than SAGA.

◮ For SAG, the LMI based on static quadratic bounds is not
feasible. The inequalities used to formulate the LMI are too
conservative! SAG requires the convexity of �! We need
more advanced inequalities, for example the so-called
weighted off-by-one IQC!

Outline

◮ Integral Quadratic Constraints

◮ Jump Dynamic Systems

◮ Numerical Rate Bounds for Stochastic Algorithms

◮ Analytical Rate Bounds

◮ Conclusions

Simplified Parameterization

Method Parameterization of P̃ Matrix Form of the Resultant LMI

SAGA
[

p1 In 0̃
0̃T p2

] 


µ1 In + q1eeT q4e µ6 In + q6eeT

q4eT µ2 q5eT

µ6 In + q6eeT q5e µ3 In + q3eeT




SDCA p1 In + p2eeT
[

µ1 In + q1eeT µ3 In + q3eeT

µ3 In + q3eeT µ2 In + q2eeT

]

Finito
[

p1 In + p2eeT p3eeT

p3eeT p4 In + p5eeT

] 


µ1 In + q1eeT µ4 In + q4eeT µ6 In + q6eeT

µ4 In + q4eeT µ2 In + q2eeT µ5 In + q5eeT

µ6 In + q6eeT µ5 In + q5eeT µ3 In + q3eeT




Simplified LMI for SAGA

Suppose ik is uniformly sampled and m > 0. Let a testing rate
0 ≤ ρ ≤ 1 be given. Suppose � ∈ S(m, L), and γ is defined
based on assumptions on fi. If there exist positive scalars p1,
p2, and non-negative scalars λ1, λ2 such that
[

p2α 2 +
(n−1

n − ρ2) np1 −α 2p2
−α 2p2 p1 +α 2p2 − 2λ2

]
≤ 0

[
(1− ρ2)p2 − 2λ1mL + 2λ2 Lγ −α p2 + (m + L)λ1 + (L − γ)λ2
−α p2 + (m + L)λ1 + (L − γ)λ2 p1 +α 2p2 − 2λ2 − 2λ1

]

Then SAGA initialized with any x0 ∈ Rp and y0
i ∈ Rp satisfies

E

[
qxk − x∗q2 +

p1

p2

n∑

i=1

qyk
i −∇ fi(x∗)q2

]
≤ ρ2kR0

where R0 = qx0 − x∗q2 + p1
p2

∑n
i=1 qy0

i −∇ fi(x∗)q2.

SAGA with Individual Convexity

When fi is m-strongly convex, we have γ = −m, and the LMI
becomes
[

p2α 2 +
(n−1

n − ρ2) np1 −α 2p2
−α 2p2 p1 +α 2p2 − 2λ2

]
≤ 0

[
(1− ρ2)p2 − 2(λ1 + λ2)mL −α p2 + (m + L)(λ1 + λ2)
−α p2 + (m + L)(λ1 + λ2) p1 +α 2p2 − 2λ2 − 2λ1

]
≤ 0

We can choose p1 =
1
L , p2 =

1
α , λ1 = 0, and λ2 =

1
L to show

E
[
qxk − x∗q2

]
≤

(
1−min

{
2Lα − 1
(Lα − 1)n

, 2mα −
α m2

(1− Lα)L

})k

R0

where R0 = qx0 − x∗q2 + α
L
∑n

i=1 qy0
i −∇ fi(x∗)q2. Choosing

α = 1
3L , we have standard SAGA rate ρ2 = 1−min

{ 1
3n , m

3L

}
.

3

SAGA without Individual Convexity
When fi is only L-smooth (not necessarily convex), we have
γ = L, and the LMI becomes
[

p2α 2 +
(n−1

n − ρ2) np1 −α 2p2
−α 2p2 p1 +α 2p2 − 2λ2

]
≤ 0

[
(1− ρ2)p2 − 2λ1mL + 2λ2 L2 −α p2 + (m + L)λ1

−α p2 + (m + L)λ1 p1 +α 2p2 − 2λ2 − 2λ1

]
≤ 0

When α = m
4(m2n+L2)

, we can choose b = 2(m2n+L2)
L2 ,

p1 = bα > 0, p2 =
1
α , λ1 =

1
L ≥ 0, and λ2 = bα to show

E
[
qxk − x∗q2

]
≤

(
1−

m2

8(m2n+ L2)

)k

R0

where R0 = qx0 − x∗q2 + m2

8(m2n+L2)L2

∑n
i=1 qy0

i −∇ fi(x∗)q2.
Hence, the ǫ-optimal iteration complexity of SAGA without
individual convexity is Õ

(
(L2

m2 + n) log(1
ǫ)
)

.

Conclusions from Simplified LMIs

◮ Finito and SDCA (with and without individual convexity)
can be analyzed similarly.

◮ When assumptions on fi change, we only need to modify
the value of γ and solve the resultant LMI.

◮ The LMI for SAGA only has 4 decision variables!

◮ Finito requires off-diagonal terms in the Lyapunov function
and the resultant LMI has 7 decision variables! We only
prove Õ

(
n log(1

ǫ)
)

under a big data condition n ≥ 48L2

m2 .

◮ SAG requires advanced quadratic constraints, and the
resultant LMI has 10 decision variables! Analytically hard!
This explains why the original proof for SAG is involved!

Summary

◮ Automate rate analysis of stochastic finite-sum methods.

◮ Distinguish difficult methods, e.g. SAG, from easy
methods, e.g. SAGA, at early stage.

◮ Use numerical semidefinite programs to support search for
analytical proofs.

Bin Hu, Peter Seiler, and Anders Rantzer, “A unified analysis of stochastic
optimization methods using jump system theory and quadratic constraints,"
Conference On Learning Theory, COLT 2017.

Future Work

◮ Analysis of Acceleration

◮ Automated Algorithm Design

◮ Worst case analysis from dual problem

◮ Asynchronous Settings and Time Delays

4

