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From Dynamical to Hybrid Systems, informally

e BN
/ \.
N
T
Dynamical system: smooth dynamics - X
R — R"”

x:R— .
solution of the IVP

f(x,x,t) =0

X(to) = X0

Can we capture Hybrid Systems trajectories as x : R — R"?



From Dynamical to Hybrid Systems, informally

dom(x) =R

X(t)i Simple Hybrid Sys-

tems: smooth dynamics
almost all the time, except
for state jumps x* = g(x7)
at some discrete t.

x R — R” still works.

How general is this?



From Dynamical to Hybrid Systems, informally

—sgn(x) + 2sgn(y)
—2sgn(x) — sgn(y)
sgn(x) + sgn(y)

Non-Smooth Dynamical
Systems: right-hand  of
differential  equations s
non-smooth.

» Filippov Differential
Inclusions

» Complementarity
Systems

x R — R"” still works.

However...
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From Dynamical to Hybrid Systems, informally

dom(x) =R"

In general, Hybrid Sys-
tems trajectory may have:

» Instantaneous cascades
of state jumps

» Chattering

Can not be captured as:

x:R—=R"

Need a Time Do-
main “denser” than R
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Semantics of Hybrid Systems Modelers

Instrumental to design:

1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation

3. Numerical simulation environments (run-time)

Need for a precise mathematical semantics

Focus of this talk:

» Comparison of Time Domains used to the define the semantics of
hybrid systems modelers

» Emphasis on compile-time analysis / simulation code generation
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Background: Synchronous Languages

Syntax of a simple synchronous language (/ Lustre)

d :=1letx=e|let f(p) =ewhereE | d;d

e =x|v|op(e)|efbye|pre(e)|f(e)| (e e)
p = (p,p) | x
E:=()|Eand E|x = e

| if ethen E else E

Examples
let min_max(x,y) = (a,b) where
if x<y let sum(x) = cpt where
thena=xand b=y cpt = (0 fby pre(cpt)) + x

elsea=yand b =x



Background: Semantics of Synhronous Languages

Chronograms
time 0 1 2 3 4 5
X = 2 4 2 1 2 3
y = 3 6 5 1 1 9
min_max(x,y) = (2,3) (4,6) (2,5 (1,1) (1,2) (3,9)
pre(x) = nil 2 4 2 1 2
xfbyy = 2 6 5 1 1 9
sum(x) = 2 6 8 9 11 14
Examples
let min_max(x,y) = (a,b) where
if x<y let sum(x) = cpt where
thena=xand b=y cpt = (0 fby pre(cpt)) + x

elsea=yand b =x
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Background: Synchronous Languages

Chronograms

time 0 1 2 3 4 5

X = 2 4 2 1 2 3

y = 3 6 5 1 1 9
min_max(x,y) = (2,3) (4,6) (2,5) (1,1) (1,2) (3,9)
pre(x) = nil 2 4 2 1 2
xfbyy = 2 6 5 1 1 9
sum(x) = 2 6 8 9 11 14

Main features

» A signal is a sequence of values or stream
» A system is function from streams to streams.
» Operations apply pointwise to their arguments.

> All streams progress synchronously. e



Background: Constructive Fixpoint Semantics

Define semantics as mutual least fixpoint of set of monotonous operators
(one for each equation) [Berry 1999]

Step-by-step execution

time = 0 1 2 3 4 5
X =2 4 2 1 1 L
y = nl 2 6 1L 1 1
z =0 26 L L L
oot = 2 68 L L L
Program Extended domains and streams
let sum(x) = cpt where > t € N dicrete time
) = pr(car) e V(L)L

and z=0fbyy

and cpt = 7 + x undefined, L <v eV

» S(V) = No (Vw{L})
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Requirements on Semantics

Recall, semantics to help designing:
1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation

3. Numerical simulation environments (run-time)
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Requirements on Semantics

Recall, semantics to help designing:
1. Static analyzers / model-checkers / theories for interactive provers
2. Compile-time analysis / simulation code generation

3. Numerical simulation environments (run-time)

Therefore:
» Every well-typed program E should have a semantics [E]

» The semantics should be structural, i.e., roughly speaking:

[E1and B] = {[&] [E]}
[if ethen E; else Ep] = if [e] then[E;] else[E:], etc.

» The alternative is informal “mytool” semantics

18



Time Domains

dom(x) =R"

Phases of continuous dy-
namics interleaved with
cascades of instantaneous
state-jumps

However:

» Cascades may be
complex or even
unbounded

» The Time Domain
should be such that
time may progress
during cascades of
state-jumps

18



Time Domains

dom(x) =R
(f«,l)j (u,O)i .- Superdense Model of Time:
., ‘ \\i ; ,' T - R+ X N
(-0 Y S [Pnueli et al. 1992]

t / N
(t‘2)£‘/ 2:3;{1' real time [Lee et al 2005]

T is equipped with lexicographic order (as shown on the figure).

Two approaches for capturing signals with finite cascades of changes:
1. x(t, n) defined for 0<n<m; and undefined for n>m; [the figure]
2. x(t, n) defined for every n but x(t, n)=x(t, m;) for n>m; [Lee]
where m; is the number of changes at time t.

In the figure: m;=2, m,=0, m,=3.



Time Domains
dom(x) =R
(£.1)4 ‘

(t,0)3

L-- Superdense Model of Time:
R T=R, xN
/ [Pnueli et al. 1992]
t /

(t,z);f__/ 2:23;{’/ e [Lee et al. 2005]

[Lee 2014]:

(u,O)j

’

Such piecewise-continuous signals coexist nicely with standard
ODE solvers. At the time of discontinuity or discrete event, the

final value signal provides the initial boundary condition for the
solver. [...]



Time Domains
dom(x) =R
(t1)q :

(t,0)3

.-" Superdense Model of Time
¢ T=R, xN
[Pnueli et al. 1992]
[Lee et al. 2005]

(u,O)j

’

Nonstandard Model of Time
T ={no | ne N}
[Benveniste et al. 2012]




Time Domains
Aim:
» getting rid of the burden of smoothness assumptions
» making hybrid systems discrete
» getting the semantics by reusing techniques from discrete systems

K Nonstandard Model of Time
/! T ={nd | n € "N}

- Y [Benveniste et al. 2012]
!/ ime
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A Toy Hybrid Systems Language

Syntax ~ Zélus [Bourke et al. 2013]

d :=1letx=e|let f(p) =ewhereE | d;d
e i=x|v|op(e) | efbye|pre(e)|f(e)] (e e)

p == (p,p)|x

E:=()|Eand E|x = e
| init x = e|derx = e
| if ethen E else E
| derx = e|
| init x = e |reinit x = e
| when e do E

10/18



The Superdense Model of Time as a semantic domain

» T =g4ef Ry XN; we identify (t,0) € T with t € Ry

> X remains constant for n > m}
(t,n) t

11/18
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] equation \ semantics

derx = f(X, u); m,‘_!:m)t(ZO and ).(t = I[f]]t(xf7 Ut) and

initx =e Xp = ﬂe]lo (1)
to =0 and t 41 =

derx = f(x, u); inf{s > t, |Vre(s—¢e;s),x, <1Axs>1}

inth = a;ld reset effective at (t,,1), hence m} =1

enx > ldo .

Wreinifc(x_: b x¢ = [, (xe, ug), for tn < t < tnyq, (2)
Xty = Ha]]tov X(tn,1) = [[b]](tn,l)v n>1 # (1)

when z do

reinitx = b

reuse of (2) not possible since mf # 0

11/18




The Superdense Model of Time as a semantic domain

Such piecewise-continuous signals coexist nicely with standard
ODE solvers. At the time of discontinuity or discrete event, the
final value signal provides the initial boundary condition for the
solver. [...]

Lessons:
» Superdense time semantics seems simple as long as you keep it
informal
» Actually, it is hard to formalize
» In addition to the problems shown:
» Smoothness assumptions are needed, and
» Must be stated on the global system
» Can not capture chattering (sliding modes).
> [Lee 2014]: getting rid of the above difficulties by moving to
constructive semantics?

12/18



The Superdense Model of Time as a semantic domain

Moving to constructive semantics

» [Berry 1999] The constructive semantics gives a meaning to fixpoint
problems specified via sets of equations
» does not rely on arguments of numerical analysis (convergence of
approximation schemes)
» uses instead fixpoint theorems where the distance between signals is
defined as the largest prefix of time in which the two signals coincide
» constructive = helps understanding causality issues

13/18



The Superdense Model of Time as a semantic domain

Moving to constructive semantics

» [Berry 1999] The constructive semantics gives a meaning to fixpoint
problems specified via sets of equations
» does not rely on arguments of numerical analysis (convergence of
approximation schemes)
» uses instead fixpoint theorems where the distance between signals is
defined as the largest prefix of time in which the two signals coincide
» constructive = helps understanding causality issues

» No constructive semantics exists for continuous-time systems
(T = R4 ) [Matsikoudis and Lee 2014]

> [Lee 2014] invokes constructive semantics as given by the solver
(which works by steps)

» Non compositional, not structural
» Depends on munerical convergence properties of discretization scheme

13 /18



The Nonstandard Time Domain

"N, R =g4ef non-standard extensions of N, R
ROT =gef {th=n0| ne*N} where 0 is an infinitesimal time step
°t  =gef max{s|seT,s<t}=t—0
t* =g min{s|seT,s>t} =t+0
Xpo — X Xt — Xot

Xt =def Tt (explicit scheme) or —5 (implicit scheme)

» with the non-standard interpretation, hybrid systems become
“discrete time” and inherit a non-standard semantics

» no more difficult than Lustre semantics
> every syntactically correct program has a semantics
» the non-standard semantics is structural and compositional

» does not depend on the particular choice for the time base 9

14 /18



Nonstandard Semantics

Set °x¢ = xet, X{ =X, and X =

Xt
0

Xt .
in:

’ equation ‘ semantics
derx = €; Xty = ﬂf]]tg and
initx = f x§ = x¢ + 0[e], forall t € T, t >ty
der x = e; z =<1 A x>1
initx = a;
xt, = [a
when x > 1do t.o [[ ]]to
reinit x — b xg = if zthen [b],s else x; + O[e],, t > to

18



Nonstandard Semantics

XP — X
Set °x¢ = xet, X{ =X, and X = tTt in:
’ equation ‘ semantics
derx = e; xt, = [f],, and
initx = f x§ = x¢ + 0[e], forall t € T, t >ty
der x = e; z =<1 A x>1
initx = a;
XtO = [[a]]to
when x > 1do . .
reinit x — b xg = if zthen [b],s else x; + O[e],, t > to

» Just as for Lustre

» Since the non-standard semantics is step-based, constructive
semantics exists [Benveniste et al. 2012]
» Having *N many steps instead of N many ones is not an issue
» Of course, this semantics can not be used for simulation (#
programming languages)

15/18



There is no free lunch

Theorem [Benveniste et al. 2014]

The nonstandard semantics of every
causally-correct program is:

1. standardizable,

2. independent of 0, ./\ \ P
3. continuous \ t

on every compact set of dates not
containing:

z

1. an event, or

2. an undefined value (1)

» When defined, the superdense semantics coincides with the
nonstandard semantics

» The nonstandard semantics is not effective (cannot be executed)

16
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There is no free lunch

| . . | .
| compile-time | run-time
| |
|
assumptions: : Superdense
Program smoothness Semantics

|
| |
| . |
: no chattering :
| |

! Nonstandard !

Semantics standardization

structural

16/18



DAE Hybrid Systems: index theory & reduction

» With non-standard semantics, DAE become dAE
(difference Algebraic Equations); define x* = next x
» dAE may involve more equations than specified

. . x* = f(x,u)
X = f(X,U) shifting B X
{0 = g(x) — o ggxz)
substitutin Xt = f(X’ U) (1)
=" 10 = g (2)
0 = g(f(x,u)) (3)

Whence the constructive semantics (~ execution scheme):
1. Given x such that g(x) =0
2. Use (3) to evaluate u (constraint solver needed)

3. Use (1) to evaluate x*, which satisfies g(x*) = 0, and repeat

17/18



DAE Hybrid Systems: index theory & reduction

» With non-standard semantics, DAE become dAE
(difference Algebraic Equations); define x* = next x
» dAE may involve more equations than specified

. . x* = f(x,u)
X = f(X,U) shifting B X
{0 = g(x) — o ﬁEXZ)
substitutin Xt = f(X’ U) (1)
=" 10 = g (2)
0 = g(f(x,u)) (3)

Thm: the diff. index of a DAE coincides with the index of the dAE obtained
with the non-standard semantics

Cor: Defining the index of DAE Hybrid Systems as the index of its
non-standard semantics yields a conservative extension of DAE and
dAE indexes

17/18



Conclusion

» The superdense model of time is useful as a simulation semantics:

» Even from this point of view it has limits
» No support for nonsmooth dynamical systems simulation (with possible

chattering)

» More is needed for supporting compilation:

» Structural semantics
» Getting rid of smoothness assumptions

» The nonstandard model of time is a good candidate:

Yields a structural semantics

No smoothness assumption

Coincides with superdense semantics, when defined
Supports the slicing of execution engine into

> an event handler and
» a ODE/DAE/nonsmooth solver

v

vvyy
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