oremre. |
item = .l_>n“:‘:"

' uglege :l'.mmbnc elDege;

$8tting P name = {temesjes
WESIOPNELNg spritename = ften

SN0 = * boost::lexical_conefing
S0 ¥ * boost::lexical costefiiaie
$hash sffest = boost::lexicsl sl

Sapigned layer = 8
] ieem-»Attribute(- '.
L1t ——_——

Jayer = boosti s

= ‘p_nnl!”

. ,P;;:ul"

collane_

Wang Yi
Uppsala University
(ETAPS 2015, London)

Scalable (yet Precise) Timing Analysis:
Of Course Model-Based!

Can P finish

its execution
within D sec’s?

00000 1! 1 1 1001

011101101010

Joint work with my students:
VS

—

= ' . .
- / -

#~

Nan Guan Martin Stigge Pontus Ekberg Jakaria Abdullah

OUTLINE

 Modeling with graph-based models
* Scalable Analysis (pseudo-polynomial time)

— for the tractable cases

 Efficient Analysis (combinatorial refinement)

— for the intractable cases

Embedded Systems

-
e | o yore Pt
Event arrivals '4\“ 4'{ R i New events

P e | o LM

Event arrivals New events

Timing Analysis

* What is the maximal delay at each component?
* What is the maximal end-to-end delay?

TACAS, Aarhus, April 1995

UPPAAL

Johan Bengtsson
Kim Larsen
Fredrik Larsson
Paul Pettersson
Wang Yi

Photo: Kim Larsen, Aalborg Univ.

Model Checking of

Timed Systems

UPPAAL, IEEEEE-Tiga (FUSC): Timed automata (Uppsala Univ., Aaalborg Univ.) q
& manipulate UPPAAL XML (GPL-3, Python) &’
o Yogogdrasil (?, 7); UML (subset) -= Uppaal, intended for test generation (Aaalborg Univ.) @
o METAMOC (GPL-3, Python): WCET Analysis of ARM Processors using Real-Time r@ acking (Aalbarg
LIniv.)
o SARTS (?, Java): Model Based Schedulability Analysis of Real-Time System QUF'F'ML (Aaalborg
Iniv.)
DOPAAL (GPL-3, Python): distributed/parallel (discrete time) model checker?\%{wnrks of timed automata using

IWMF] \'

ECDAR (FUSC): timed interface theory (Aaalborg, INRLA, TU)

PyECDAR (GPL-2, Python): solve timed games based on tim&%&ata models (ITU)

24 (MIT, Java): WO automata formal language (MIT)

TEMPO (closed, Java): Farmal language for madeling di d systems w/ | wio timing constraints as collections

of interacting state machines, i.e., imed inpuﬂnutpvata (TISA) (UIUC) # model checke rs
o Tempo2HSal (?, Python): Tempo (.tica)-= SAL (.h=al) franslator (SRI1)

ATAS (GPL-3, Python): Alternating 1-clock (ful qwble}Timed Automata Solver

PPL binding (GPL-2, Python): for Parma Pn&

analysis

MCPTA (FUSC, ?). Probabilistic Ti %utnmata model checker for MoDeST | UPFPAAL | FRISK -

(Saarland Univ.)

SAAIRE (7): Abstraction r &nt maodel checker for Timed Automata based on extended SAT-zoi

like input format [Univ.&xurg. CWI)

Fortuna (GPL-3, C+ dise). MC priced probabilistic timed automata (FFTAs) (Univ. Twente)

COSPAN (?, 74 Qnata—thenretic verification of coordinating processes with timing constraints |

Romeo: timed I nets (IRCCyN)

ExSched: develop aperating system schedulers for VeWorks and Linux wio modifying the underlyi

([Malardalen Univ.]hitp:feww es.mdh. sefstafif 87-Mikael__sberg))

RTComposer (Java): classes and utilities for predictable real-time scheduling (BenGurian, UPenn]

ASTRAL: MC of real-time systems (UCSB)

FAT (7, C#): simulator, MC, refinement checker for cancurrent and BT systems (Manyang Tech. Univ.)

HCMC (7, C++): Compaositional model checking for real-time systems (EMS-Cachan)

dral Lib features some specific methods for Timed A@tomata

ps an PRISM

kernel

time

State of the art

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnso

?\(SQ\(\
Mr. UBPAAL Mr. Industry

b \0 ;5 Y
j / \gi\ Qﬁ! 7 I‘-\ "}:?IT
N o— \ JER \'/<T
\ P e
[/ Pl i N/ 4
e ,
\l llt T' ,L--I:/)
| o

| can’t solve the problem, neither can all these famous Model-Checkers

Analysis

“Difficulty”
A

Decidable

Analyzable

Tractable
(pseudo-p)

LICS
CONCUR
N ICALP
Run & Pray TACAS r_|n
CAV >
. . O
Efficient]
“
o
ECRTS g S
RTAS i
m X
EMSOFT =
— —_— >
“Needed” for Modeling
Interesting “Expressiveness”
features

“richness”

Timing Analysis

Sequential Case (WCET Analysis)

task, _

WCET

Concurrent Case (Response Time Analysis)

Non-deterministic releases

e A

S

WCRT=WCET
| o2

WCRT

e | o

task; A__

WCRT

Timing Analysis

Sequential Case (WCET Analysis)

* Assume the WCET of each task is given (resource budget)
* How to estimate the Worst-Case Response Time of a task?

Concurrent Case (Response Time Analysis)

Non-deterministic releases

[aiT tool from Absint]

Wilhelm et al
Precision >> 95%

e A

S

WCRT=WCET

| o2

task; A__

Modeling for (System-Level) Timing Analysis

« The event arrival patterns e.g. using timed automata

« Synchronization between components,

» Resource arbitration, protocols and scheduling algorithms
« The resource demands or budget e.g. the WCET

« The timing constraints e.g. deadlines

M’ ---...---w\\ DSP yo olee M’
.
) N o l‘~ &~
. \J -~ ‘\ 4
(Y AN S, -)
g . ’ R ~
’ S ’ . O M

Output Stream

Input Stream

b AT S ¥ gan | ok LELH

Input Stream Output Stream

Timed Models

Timed Petri Nets, early 80s

— Time Intervals over transition firing
Process Algebras, 80s —90s

— Delays + untimed models e.g. Milner’s CCS
Timed Automata, early 90s

— finite automata + clock constraints
Real-Time Task Models since 70s

— Layland and Liu’s periodic tasks, 1973

— The variants of L&L model [RTSS community]
Real-Time Programming e.g. Ada 83

— Delay, Tasking, Run-Time System

Hybrid Systems/Automata, Modelica ... UMLRT ...
(yesterday)

Hierarchy of Models

Task automas

difficult Timed Petri Nets

e ——— L L -

8
)
e
a recurring RT (RRT)
L (DAG, p)
recurring branching (RE)
(tree, p) on-cyclic GMF
generalized multiframe [G (order arbitrary)
(e, di. pi)
mulnfgl@? sporadic
efficient «® \&’ (h) ! (e.d.p)
\"\ Liu & Layland
2 (e.d = p)

Expressiveness

low

Liu and Layland’s Model, 1973

A system is a set of periodic tasks each described by two numbers:

* e:the worst case execution time (WCET)
e P:the minimum inter-release delay (implicit deadline)

[] L] '

S~ m |-

(e.p)

* The workload of each task: e/p
* The system workload or utilization: U = ei/pi

I Feasibility (i.e. EDF-schedulability): no deadline missif U <1

I Fixed-priority Schedulability: no deadline miss if U < n(2'" — 1) I

The well-known Rate-Monotonic Scheduling

Hierarchy of Models

difficult
v (co)NP-I e,
Srrongly * _ emmmmmmmmEEE e ~)
g| e ~
.1—"
£
0
uw
o
L

two integers implicit deadline

efficient

high

Expressiveness

low

Hierarchy of Models

difficult high
F

" G omado Patynaris

ALL these models are “tractable”
but have limited expressiveness

tree @ branching

cycle graph G@ different job types

three integers @'@ explicit deadline
A 4

efficient two integers L&L implicit deadline low

Feasibility test
Expressiveness

[Survey, RTS journal, Martin and Wang, 2015]

Example: Tree/DAG-task model

[Baruah et al, 1998, 2003, 2010]

@----*' Period P = 57
7 10

Restrictions of Non-Cyclic RRT

@ lasks are still recurrent

» Always revisit source J;
» No cycles allowed!

Restrictions of Tree/DAG model

@ Tlasks are still recurrent

» Always revisit source J;
» No cycles allowed!

@ Consequences:

» No local loops

Restrictions of Tree/DAG model

@ [asks are still recurrent

» Always revisit source Jy
» No cycles allowed!

@ Consequences:

» Not compositional
» No Jocal loops (for modes etc.)

Hierarchy of Models

difficult

-1-:-5::u':1.:.ir-P-':'|-'!'"':"“:i
Further extension without crossing
the “tractable” borderline?

tree @ branching

cycle graph G@ different job types

three integers @'@ explicit deadline
A 4

efficient two integers L&l implicit deadline

Feasibility test

high

Expressiveness

low

[Stigge et al, RTAS 2011]

The Digraph Real-Time Model (DRT)

<2 4> <5,10>

The WCET, deadlines
and release delays
should be ensured by
the Ada run-time system

<8,15>

e Pairs on nodes are the WCET and deadline on the task code
e.g. A has WCET 2 and relative deadline 4
* Numbers on edges are the minimum inter-release delays

In Ada Tasking:

Procedure PA Procedure PB Procedure PC

“release A” “release B”; “release C”

Delay(2); Delay(25); If “condition”

PC PA then Delay(10); PA
else Delay (11); PB

DRT: Semantics (any path of the graph is a possible behavior)

- 3 \ g tf;

'I5 3 10 \I

DRT Sema ntics (any path of the graph is a possible behavior)

(3,8)

(5, 10)

DR T: Semantics (any path of the graph is a possible behavior)

(3,8)

(5,10}

Workload of a DRT

11
1.8 15
20
s 10 (5.10
1.5

Demand Bounds Function (dbf)

e
¢ X

Time window

A system model = a set of DRT's
modeling the components

The system workload:

y Time

Hierarchy of Models

difficult
-+ . .
$ arbitrary graph DRT branching, loops, ...
= -
==
ot
O tree @9 branching
T =
b
Q
L
cycle graph @@ different job types
three integers @@ explicit deadline
A 4

efficient two integers L&l implicit deadline

high

Expressiveness

low

[Stigge et al, RTAS 2011]

Hierarchy of Models

difficult high
A
_hard
Strongly \C IN_P ______________________
Figsje;dﬂo—?o\yﬂﬂm"al ST
E arbitrary graph DRT branching, loops, ... 5
4 + —
L
n =
— _ 0
0 tree @@ branching Y
;T Y —
3 3
Q
L Ll
cycle graph G@ different job types
three integers @'@ explicit deadline
A 4

efficient two integers L&L) implicit deadline low

Complexity Result ~ [RTAS 2011]

Theorem (S. et al., 2011)

For DRT task systems T with a utilization bounded by any ¢ < 1,
feasibility can be decided in pseudo-polynomial time.

Pseudo-polynomial time = Tractable/efficient

M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph Real-Time
Task Model,” in Proc. of RTAS 2011, pp. 71-80.

ldeas for feasibility analysis

* Characterize the system workload ...
* |f the worst-case workload is over 100%, it is over-loaded,
implying deadline miss

Units of work a CPU can compute over time
(100%)

dbf
1 Workload

Time

How to check this?

Of course, if the BLUE line is always below the RED, the system
should work well without deadline miss!

Units of work a CPU can compute over time
dbf (100 %)

Workload

Time

Here is the intuition why “Pseudo-P”

If the utilization (long-term rates of DRT’s) of a system is
bounded by a constant ¢ < 1, any deadline miss, if exists, must
appear before a pseudo-polynomial upper bound:

Units of work a CPU can compute over time

’
- -
dbf
- T
I!Torkload
Time

Calculating the Bound

) dl?‘fT(t) " “Most dense” cycle

e Linear bound for dbf(t)
e Slope: Less than 1

e Intersection with t gives bound

e Check only up to

A system model = a set of DRT's
modeling the components

/
S

Demand Bounds

o

iy’

o

The system workload:

y Time

Evaluation: Runtime vs. Utilization

1.4 , | ! !
— ¢ EDF ' ! !

| S e e .
% : : N
B L0 RRERREEEEE S SRRk EEN EEEEELTEREE .
= : : | ! :
B DB R o R RERE R .
= | | A
I S S S dio. bk, l
.E E E ((: ll : e
;ri. T S .—.!:.—I_'_"-_._'f-______
o : ..
2 5 e

02F-------t g .

.__.."' ‘E-F-J E
D{]“--" | | | |
0% 20% 40% 60% 80% 100%
Task Set Utilization

Setting:

e Randomly generated task sets

e 1-30 tasks, 5-10 vertices per task, branching degree 1-3, ...

 How about synchronization?
— the analysis without considering synchronization is SAFE!
— Precise analysis possible with “Combinatorial Refinement”

 How about “static priority scheduling”?

[Stigge/Wang, ECRTS 2012]

Hierarchy of Models

difficult high

A

arbitrary graph DRT branching, loops, ...

tree @@ branching

cycle graph @@ different job types

Strong‘VNPha—rd— - 7T T -

— v oy
three integers @'@ explicit deadline
L 4

efficient two integers L&L) implicit deadline low

Static-priority Schedulability
Expressiveness

Summary

Analysis Complexity
Feasibility i.e. EDF-Schedulability Static-priority Schedulability

General graphs (Di-graph)

Trees/DAGs Pseudo-P

Cyclic graphs (GMF) Pseudo-P

Sporadic (L&L, deadlinezperiod}—_Pseudo-P

Pseudo-P

L&L (periodic) Linear Pseudo-P

For systems with utilization
bounded by a constant less than 1

ECRTS 2012
(or below 100%) []

What can we do?
Otherwise Strongly coNP-complete

I The problem open for 25 years, theoretically interesting !!
[ECRTS 2015, Pontus Ekberg and Wang Yi]

[TACAS 2015]

Combinatorial Refinement

solving “Combinatorial Problems”
(for timing analysis, it works very well!)

A system model = a set of DRT's
modeling the components

% This works perfectly 5@};

1 for feasibility checking: g

- the global worst case L
can be constructed from
the local worst cases

The system workload:
y Time

A system model = a set of DRT's
modeling the components

In general, each component may have a
set of behaviors e.g. Paths or traces

A system model = a set of DRT's
modeling the components

Often, we have to check some property guaranteed
by all the combinations of individual local behaviors
and thus may have to enumerate ... (combinatorial explosion)

Construct an Abstract Tree
for each individual component

Construct an Abstract Tree
for each individual component

Any non-leaf node father should be an
over-approximation of his sons In the sense that

(cn o father) sat F = (... .. any son) sat F

Construct an Abstract Tree
for each individual component

For instance, the Combination of all roots satisfies the desired property
implies that all combinations of the leaves satisfy the same property.

(roots) sat F =» (any leave, any leave, ... any leave) sat F

Abstract Request Functions

(2,5)

oM B0 O
|

O 5 10 15 20 25 30 35 40

Abstract Request Functions

oM OO0 O
|

0O 5 10 15 20 25 30 35 40

Abstract Request Functions

(2,5)

rf(vﬂzvz,wa)

V5,V4,V2)

oM B O O

25 30 35 40

Abstraction Tree foreach DRT

o O O
rfl .f'fg O Of’f5
rf3 rf4

Define an abstraction tree per task:
e Leaves are concrete rf

e Each node: maximum function of child nodes

Abstraction Tree foreach DRT

o O O
rfl .-"fg f’f5

rf3 .-"f.-:L

Define an abstraction tree per task:
e Leaves are concrete rf

e Each node: maximum function of child nodes

Abstraction Tree for each DRT

mrf

rf1 rfo rfs
rf3 rf4

Define an abstraction tree per task:
@ Leaves are concrete rf
@ Each node: maximum function of child nodes

@ Root is mrf, maximum of all rf

Combinatorial Abstraction Refinement

mrf(T")

N

AT

Task T

AT AT

New Algorithm:
@ Test one combination of all mrf.
o If fp-feasible: done
@ Otherwise: Replace one mrf with all child nodes, get 2 new
combinations to test

@ Repeat until:

» All combinations show fp-feasibility, or
» A combination of leaves shows non-fp-feasibility

Evaluation: Runtime vs. Utilization

! , [
14H @ @ EDF | b e
' 1
—a SP |
7 12 R A Rt SV SUSNE =
2 o
& . I
I L R e R RROECEEEECEEE LI SR CEEECEERED -
!
0
E" 8_"""""""""""""""'""""""""""""""""""'E"" """"""]
: B
e 1 S _
2 !
E‘ :‘E
2} A e e ’ """""""" n
=} .
< .. i

(E).(J 0.2 0.4 0.6 0.8 1.0
Task Set Utilization

Comparing runtimes of
o EDF-test using dbf (pseudo-polynomial)

® SP-test based on Combinatorial Abstraction Refinement

Evaluation: Tested vs. Total Combinations

Tested Combinations

| xxx SCHED

-+ UNSCHED|...i .f..oi.o]

0t 10° 108 107 108
Total Combinations

10° 10t 10* 10°

10° samples of single-job tests.
@ Executed tests: in 99.9% of all cases, less than 100

@ [otal combinations possible: up to 1

012

10°

101 101 10

Conclusions

“Code is Art” — Daniel Licata

Model is “Abstract Art” , the key for scalable and precise analysis
— it should be as simple as possible but not simpler
— it should be as expressive as possible but not more

Digraph Model instead of Timed Automata?
— Expressive enough to capture Ada tasking
— Efficient analysis possible: Pseudo-polynomial

Combinatorial Refinement works well for timing problems
— In particular when local search space can be abstracted & ordered
— other verification problems?

Current work
— Synchronization and resource sharing
— Multiprocessor mapping and scheduling
— TIMES++, a new tool based on Digraph, aiming at industrial applications

57

The WCET Analysis Problem

A fundamental problem for embedded systems design

— Worst-Case Execution Time (WCET) analysis

Challenges (“termination” doesn’t make the problem easy)

— “too many input” =2 too many execution paths (difficult to find the worst-case)

— hardware features e.g. caches (“the HW state” results in different execution times)

NS

worst-case performance

worst-case guarantee

distribution of times

Lower
timing BC
bound

The actual WCET
Minimal must be found or | Maximal
ET observed upper bounded observed
execution execution
time time

d
" 1 I II W I

P
P
Upper
WCET timing
bound

measured execution times ——|

possible execution times

time

timing predictability

WCET Analysis

e Path Analysis
— which path leads to the WCET ?
— well-known technique by ILP

— need to know the timing delay
of each instruction

e Architecture Analysis

— Cache Analysis:

Is @ memory access hit or miss?

— other factors like pipeline ...

WCET Analysis

e Path Analysis

— which path leads to the WCET ?
— well-known technique by ILP

— need to know the timing delay
of each instruction

loop
bound

* Architecture Analysis [Survey 2015 wang et al]
— Cache Analysis:
Is a memory access hit or miss?
* AH: always hit lop
* FM: first miss, then always hit
* AM: always miss
* NC: not classified

— other factors like pipeline ...

WC ET Ana IySiS [aiT tool from Absint]

Wilhelm et al

Precision >> 95%
e Path Analysis

— which path leads to the WCET ?

— well-known technique by ILP 10 O
10
— need to know the timing delay @ e
of each instruction bLZ’S,’?d Joop.
® ()
* Architecture Analysis [Survey 2015 wangetal] 10 O oo
— Cache Analysis: 2 O
Is a memory access hit or miss? o O > 10
* AH: always hit oond .. X,
* FM: first miss, then always hit e
* AM: always miss
* NC: not classified = always miss O10

— other factors like pipeline ...

Timing Analysis

Sequential Case (WCET Analysis)

* Assume the WCET of each task is given (resource budget)
* How to estimate the Worst-Case Response Time of a task?

Concurrent Case (Response Time Analysis)

Non-deterministic releases

e A

S

WCRT=WCET
| o2

WCRT

task; A__

e | o

WCRT

