
Scalable (yet Precise) Timing Analysis:
Of Course Model-Based!

Wang Yi
Uppsala University

(ETAPS 2015, London)

P

Can P finish

its execution
within D sec’s?

Joint work with my students:

Nan Guan Martin Stigge Pontus Ekberg Jakaria Abdullah

OUTLINE

• Modeling with graph-based models

• Scalable Analysis (pseudo-polynomial time)

– for the tractable cases

• Efficient Analysis (combinatorial refinement)

– for the intractable cases

4

I/O

I/O

DSP

Input Stream

Input Stream

BUS

ECU

I/O

FPGA

Output Stream

Output Stream

Event arrivals

Event arrivals New events

New events

• What is the maximal delay at each component?
• What is the maximal end-to-end delay?

Embedded Systems

Timing Analysis

TACAS, Aarhus, April 1995

UPPAAL

Johan Bengtsson
Kim Larsen
Fredrik Larsson
Paul Pettersson

Wang Yi

Photo: Kim Larsen, Aalborg Univ.

M
o

d
e

l C
h

e
ck

in
g

o
f

model checkers

time

Mr. Industry

State of the art

Mr. UPPAAL

I can’t solve the problem, neither can all these famous Model-Checkers

The Analyzable Zone of ”Models”

Analysis
“Difficulty”

Modeling
“Expressiveness”
“richness”

Tractable
(pseudo-p)

Analyzable

“Needed” for
Interesting
features

Scalable

Efficient

Decidable
Run & Pray

ESW
EEK

C

P
SW

EEK

ETA
P

S/FLo
C

TACAS

RTSS
ECRTS
RTAS
EMSOFT

CAV

LICS
CONCUR
ICALP

task3

Timing Analysis

Sequential Case (WCET Analysis)

Concurrent Case (Response Time Analysis)

WCET

WCRT

WCRT

Non-deterministic releases

task1

task1

task2

WCRT=WCET

D3

D1

D2

task3

Timing Analysis

Sequential Case (WCET Analysis)

Concurrent Case (Response Time Analysis)

WCRT

WCRT

Non-deterministic releases

task1

task2

WCRT=WCET

D3

D1

D2

• Assume the WCET of each task is given (resource budget)
• How to estimate the Worst-Case Response Time of a task?

Wilhelm et al
Precision >> 95%

[aiT tool from AbsInt]

Modeling for (System-Level) Timing Analysis

• The event arrival patterns e.g. using timed automata

• Synchronization between components,

• Resource arbitration, protocols and scheduling algorithms

• The resource demands or budget e.g. the WCET

• The timing constraints e.g. deadlines

11

I/O

I/O

DSP

Input Stream

Input Stream

BUS

ECU

I/O

FPGA

Output Stream

Output Stream

Timed Models

• Timed Petri Nets, early 80s

– Time Intervals over transition firing

• Process Algebras, 80s – 90s

– Delays + untimed models e.g. Milner’s CCS

• Timed Automata, early 90s

– finite automata + clock constraints

• Real-Time Task Models since 70s

– Layland and Liu’s periodic tasks, 1973

– The variants of L&L model [RTSS community]

• Real-Time Programming e.g. Ada 83

– Delay, Tasking, Run-Time System

• Hybrid Systems/Automata, Modelica … UML RT …
(yesterday)

 Task automata

 Timed automata

Task automata

UML-RT
TCSP

Pric. Aut.
 Hybrid Automata ….

Timed Petri Nets

?
Timed game

Liu and Layland’s Model, 1973

A system is a set of periodic tasks each described by two numbers:
• e: the worst case execution time (WCET)
• P: the minimum inter-release delay (implicit deadline)

• The workload of each task: e/p
• The system workload or utilization: U = ∑ ei/pi

Feasibility (i.e. EDF-schedulability): no deadline miss if U ≤ 1

Fixed-priority Schedulability: no deadline miss if U ≤

The well-known Rate-Monotonic Scheduling

 Task automata Task automata

ALL these models are “tractable”
but have limited expressiveness

[Survey, RTS journal, Martin and Wang, 2015]

Example: Tree/DAG-task model
[Baruah et al, 1998, 2003, 2010]

57 114

Restrictions of Tree/DAG model

Restrictions of Tree/DAG model

Further extension without crossing
 the “tractable” borderline?

The Digraph Real-Time Model (DRT)

A B

C

10

2
11

25
<5,10> <2,4>

• Pairs on nodes are the WCET and deadline on the task code
 e.g. A has WCET 2 and relative deadline 4
• Numbers on edges are the minimum inter-release delays

<8,15>

Procedure PA
“release A”
Delay(2);
PC

Procedure PB
“release B”;
Delay(25);
PA

Procedure PC
“release C”
If “condition”
 then Delay(10); PA
 else Delay (11); PB

In Ada Tasking:

[Stigge et al, RTAS 2011]

The WCET, deadlines
and release delays
should be ensured by
the Ada run-time system

(any path of the graph is a possible behavior)

Demand bound: (10, 5)

(any path of the graph is a possible behavior)

Demand bound : (28, 6) Demand bound : (10, 5)

(any path of the graph is a possible behavior)

Demand bound : (43, 9) Workload: (28, 6) Workload: (10, 5)

Workload of a DRT

Demand Bounds Function (dbf)

Time window

(43,9)

(28,6)
(10,5)

A system model = a set of DRT’s
modeling the components

Time

dbf

The system workload:

+ + +

[Stigge et al, RTAS 2011]

[RTAS 2011]

• Characterize the system workload …

• If the worst-case workload is over 100%, it is over-loaded,
implying deadline miss

Time

dbf

Units of work a CPU can compute over time
 (100%)

Workload

Ideas for feasibility analysis

Of course, if the BLUE line is always below the RED, the system
should work well without deadline miss!

Time

dbf

Units of work a CPU can compute over time
 (100 %)

Workload

 How to check this?

If the utilization (long-term rates of DRT’s) of a system is
bounded by a constant c < 1, any deadline miss, if exists, must
appear before a pseudo-polynomial upper bound:

Time

Units of work a CPU can compute over time

Workload

Here is the intuition why “Pseudo-P”

D

dbf

D =
1 -

A system model = a set of DRT’s
modeling the components

Time

dbf

The system workload:

+ + +

D

• How about synchronization?

– the analysis without considering synchronization is SAFE!

– Precise analysis possible with “Combinatorial Refinement”

• How about “static priority scheduling”?

[Stigge/Wang, ECRTS 2012]

St
at

ic
-p

ri
o

ri
ty

 S
ch

ed
u

la
b

ili
ty

Summary

Models Analysis Complexity

Feasibility i.e. EDF-Schedulability Static-priority Schedulability

General graphs (Di-graph) Pseudo-P Strongly coNP-complete

Trees/DAGs Pseudo-P Strongly coNP-complete

Cyclic graphs (GMF) Pseudo-P Strongly coNP-complete

Sporadic (L&L, deadline≠period) Pseudo-P Pseudo-P

L&L (periodic) Linear Pseudo-P

For systems with utilization
bounded by a constant less than 1
(or below 100%)

Otherwise Strongly coNP-complete

[ECRTS 2015, Pontus Ekberg and Wang Yi]

!! The problem open for 25 years, theoretically interesting !!

What can we do?

[ECRTS 2012]

Combinatorial Refinement
solving “Combinatorial Problems”

(for timing analysis, it works very well!)

[TACAS 2015]

A system model = a set of DRT’s
modeling the components

Time

dbf

The system workload:

+ + +

D

This works perfectly
for feasibility checking:
the global worst case
can be constructed from
the local worst cases

In general, each component may have a
set of behaviors e.g. Paths or traces

A system model = a set of DRT’s
modeling the components

A system model = a set of DRT’s
modeling the components

Often, we have to check some property guaranteed
by all the combinations of individual local behaviors
and thus may have to enumerate … (combinatorial explosion)

Construct an Abstract Tree
for each individual component

Construct an Abstract Tree
for each individual component

Any non-leaf node father should be an
over-approximation of his sons In the sense that

 (… ... father … …) sat F  (... … any son … …) sat F

Construct an Abstract Tree
for each individual component

For instance, the Combination of all roots satisfies the desired property
implies that all combinations of the leaves satisfy the same property.

 (roots) sat F  (any leave, any leave, … any leave) sat F

for each DRT

for each DRT

for each DRT

Conclusions

“Code is Art” – Daniel Licata

• Model is “Abstract Art” , the key for scalable and precise analysis

– it should be as simple as possible but not simpler

– it should be as expressive as possible but not more

• Digraph Model instead of Timed Automata?

– Expressive enough to capture Ada tasking

– Efficient analysis possible: Pseudo-polynomial

• Combinatorial Refinement works well for timing problems

– In particular when local search space can be abstracted & ordered

– other verification problems?

• Current work

– Synchronization and resource sharing

– Multiprocessor mapping and scheduling

– TIMES++, a new tool based on Digraph, aiming at industrial applications

 The WCET Analysis Problem

• A fundamental problem for embedded systems design
– Worst-Case Execution Time (WCET) analysis

• Challenges (“termination” doesn’t make the problem easy)

– “too many input”  too many execution paths (difficult to find the worst-case)

– hardware features e.g. caches (“the HW state” results in different execution times)

57

WCET Analysis

• Path Analysis

– which path leads to the WCET ?

– well-known technique by ILP

– need to know the timing delay

 of each instruction

• Architecture Analysis

– Cache Analysis:

 Is a memory access hit or miss?

– other factors like pipeline …

loop

bound

loop

bound

loop

bound

loop

bound

WCET Analysis

• Path Analysis

– which path leads to the WCET ?

– well-known technique by ILP

– need to know the timing delay

 of each instruction

• Architecture Analysis [Survey 2015 wang et al]

– Cache Analysis:

 Is a memory access hit or miss?

• AH: always hit
• FM: first miss, then always hit
• AM: always miss
• NC: not classified

– other factors like pipeline …

loop

bound

loop

bound

loop

bound

loop

bound

FM

AH

AH

AM

AM

AH

AM

FM

AH

AH

AH

AM

NC

NC

AH

WCET Analysis

• Path Analysis

– which path leads to the WCET ?

– well-known technique by ILP

– need to know the timing delay

 of each instruction

• Architecture Analysis

– Cache Analysis:

 Is a memory access hit or miss?

• AH: always hit
• FM: first miss, then always hit
• AM: always miss
• NC: not classified  always miss

– other factors like pipeline …

loop

bound

loop

bound

loop

bound

loop

bound

2

2

2

10

10

2

10

2

2

2

2

10

10

10

2

[aiT tool from AbsInt]

[Survey 2015 wang et al]

Wilhelm et al
Precision >> 95%

task3

Timing Analysis

Sequential Case (WCET Analysis)

Concurrent Case (Response Time Analysis)

WCRT

WCRT

Non-deterministic releases

task1

task2

WCRT=WCET

D3

D1

D2

• Assume the WCET of each task is given (resource budget)
• How to estimate the Worst-Case Response Time of a task?

