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Towards a Scalable Control Theory
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Can we find distributed controllers by distributed computation?
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e Positive and Convex-Monotone Systems
o Voltage Stability

o HIV and Cancer Treatment
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Positive systems

A linear system is called positive if the state and output remain
nonnegative as long as the initial state and the inputs are
nonnegative:

%=Ax—|—Bu y=Cx

Equivalently, A, B and C have nonnegative coefficients except
for the diagonal of A.

Examples:

@ Probabilistic models.
@ Economic systems.

@ Chemical reactions.

@ Traffic Networks.
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Positive Systems and Nonnegative Matrices

Classics:

Mathematics: Perron (1907) and Frobenius (1912)
Economics: Leontief (1936)

Books:

Nonnegative matrices: Berman and Plemmons (1979)
Dynamical Systems: Luenberger (1979)

Recent control related work:

Biology inspired theory: Angeli and Sontag (2003)
Synthesis by linear programming: Rami and Tadeo (2007)
Switched systems: Liu (2009), Fornasini and Valcher (2010)
Distributed control: Tanaka and Langbort (2010)

Robust control: Briat (2013)
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Stability of Positive systems

Suppose the matrix A has nonnegative off-diagonal elements.
Then the following conditions are equivalent:

(z) The system % = Ax is exponentially stable.

(iz) There exits a vector & > 0 such that AS < 0.
(The vector inequalities are elementwise.)

(iii) There exits a vector z > 0 such that ATz < 0.

(tv) There is a diagonal matrix P > 0 such that
ATP+PA<O
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Lyapunov Functions of Positive systems

Solving the three alternative inequalities gives three different
Lyapunov functions:

AE <0 ATP+PA <0 ATz <0

T

Vix) = m}?x(xk/{fk) V(x) =xTPx V(x) =2"x
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A Scalable Stability Test for Positive Systems

Stability of x = Ax follows from existence of &, > 0 such that

ain a2 0 au| [& 0
az aze azz 0 | &

0 a3z asz az| |$3
as1 0 ag3 ag| (&4

> 0
0
0

A

The first node verifies the inequality of the first row.
The second node verifies the inequality of the second row.

Verification is scalable!
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A Distributed Search for Stabilizing Gains

aj; — 41 a2 0 au
a1 +41 age—4Ls azz O

0 ase + 43 ass ass

a41 0 43 Q44

Suppose > 0 for 41,45 € [0, 1].

For stabilizing gains ¢1, 45, find 0 < u; < &, such that

a1 a2 0 aus] [& -1 0 0
a1 age agzs O o g- 1 -1 [,Lh] < 0
0 asx ass asz| |&s 0 1] |k 0
a1 0 a3 ags| (& 0 0
and set 41 = py /&1 and £ = g /Es. Every row gives a local test.

Distributed synthesis by linear programming (gradient search).
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Examples: Transportation Networks

@ Cloud computing / server farms
@ Heating and ventilation in buildings
@ Traffic flow dynamics

@ Production planning and logistics
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Externally Positive Systems

G € RHZ*" is called externally positive if if the corresponding
impulse response g(t) is nonnegative for all . The set of all
such matrices is denoted PHZ.*".

Suppose G,H € PH2". Then
o GH € PHY™"
@ aG + bH € PHY when a,b € R,.
9 [|Glloo = IG(0)]l-
o (I —G)~! e PHY" if and only if G(0) is Schur.
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Positively Dominated Systems

G € RHZ " is called positively dominated if |G (iw)| < G;z(0)
for € R. The set of all such matrices is denoted DHZ*".

Suppose G,H € DHZ". Then
o GH € DHY"
@ aG + bH € DHY" when a,b € R;.
® [|Glloo = IG(0)]l-
o (I —G)~! € DH™*" if and only if G(0) is Schur.
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Example 3: Mass-spring system

X2

X4 X1

X3

X + dix s kixz Z el] + Wi

<32 +dis+ ki + Zeij) Xi(s)=>_ <£inj(s) + (G — Kij)X,-(s)) + Wi(s)

J J
= (A+ELF)X + BW

The transfer matrices B, E and A + ELF are positively dominated for
all L € D provided that d; > k; + Zj ;.
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Max-separable Lyapunov Functions

Max-separable: V(x) = max{Vi(x1),..., Va(xs)}

Theorem. Let & = f(x) be a monotone system such that the
origin globally asymptotically stable and the compact set

X C R% isinvariant. Then there exist strictly increasing
functions V, : R, — R, for k = 1,...,n, such that

V(x) = max{Vi(x1),..., Vu(x,)} satisfies

d
7V (1) = =V (x(t))

along all trajectories in X .

[Rantzer, Riiffer, Dirr, CDC-13]
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Proof idea
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Convex-Monotone Systems

The system

x(t) = f(x(2),u(?)), x(0) =a
is @ monotone system if its linearization is a positive system. It

is a convex monotone system if every row of f is also convex.

Theorem. [Rantzer/ Bernhardsson (2014)]

For a convex monotone system & = f(x,u), each component of
the trajectory ¢;(a,u) is a convex function of (a,u).
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o Positive and Convex -Monotone Systems

o Voltage Stability

o HIV and Cancer Treatment
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The power p = iugy delivered to the load is upper bounded by

u2
p=i(u; — Ri) < ﬁ.
An active load:
di p }
di wm—-Ri "

where p is the power demand.

Voltage collapse occurs if p is too large!
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Two Transmission Lines

i1 i2

)1 Y2
(@

Node 3 is an active load with

dis _ p(y1+e)

= — — i3
dt  yiui+ yug —1i3

For constant generator voltages w1 and uo, the load voltage
us = y1u1 + ysus — iz could shrink to zero in finite time, which
means voltage collapse.
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Arbitrary Networks

Voltages at generators u¢ and loads 1 are mapped into
external currents i and i’ according to

)= ive e [t

The load model: % (£) = % — iL(¢) gives

di* AV TNALEN 1 0L LGy, GY] L AL
;@O =p/I[(Y5) (@ =Y u)] —i()

This system is convex-monotone with state i™ and input —u®,
SO
.G L .L dl d dl

i7,—u",i”,— a

dt dt

are all convex functions of u&
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o Positive and Convex-Monotone Systems
o Voltage Stability

o HIV and Cancer Treatment
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Combination Therapy is a Control Problem

Evolutionary dynamics:

& = (A—zi:uiDi)x

Each state x;, is the concentration of a mutant. (There can be
hundreds!) Each input u; is a drug dosage.

A describes the mutation dynamics without drugs, while
D',...,D™ are diagonal matrices modeling drug effects.

Determine uq,...,u;, > 0withuy + -+ - + u,, < 1 such that x
decays as fast as possible!

[Jonsson, Rantzer,Murray, ACC 2014]
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Optimizing Decay Rate

Stability of the matrix A — 3", u; D' + yI is equivalent to
existence of & > 0 with

(A=Y wD'+yD)é <0

12

For row k, this means

ApE = uiDiE + 78, <0

or equivalently

Apé

i
Maximizing y is convex optimization in (log &;,u;,7) !
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Using Measurements of Virus Concentrations

Evolutionary dynamics:
(A Zu, ) x(¢)

Can we get faster decay using time-varying u(¢) based on
measurements of x(¢) ?
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Using Measurements of Virus Concentrations

The evolutionary dynamics can be written as a convex
monotone system:

S rogm() = 250 — S (9D

dt xp(2)

Hence the decay of log x, is a convex function of the input and
optimal trajectories can be found even for large systems.
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clearance rate § = 0.24 day ', mutation rate 4 = 10~* day !
and replication rates for viral variants and therapies as follows

Virus variant Therapy 1 Therapy 2 Therapy 3
Type 1 (x1) D{=0.05 D?=010 D?=0.30
Type 2 (x2) Di=025 DZ2=0.05 D3=0.30
Type 3 (x3) Di=0.10 D2=030 DZ=0.30
Type 4 (x4) D;j=0.30 Di=030 D;=0.15
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Optimized drug doses:

20 40 60 80 120 140 160 180 200

Tota

T T T

| virus population:
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@ Scalability for Positive and Convex-Monotone Systems
@ Voltage Stability

@ HIV and Cancer Treatment
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