
Distributed Alternating Direction Method of Multipliers
for Multi-agent Optimization

Asu Ozdaglar

Laboratory for Information and Decision Systems
Operations Research Center

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Lund Workshop on Dynamics and Control in Networks
October, 2014

1

Introduction

Motivation

Many networks are large-scale and comprise of agents with local information
and heterogeneous preferences.

This motivated much interest in developing distributed schemes for control
and optimization of multi-agent networked systems.

Routing and
congestion control in
wireline and wireless
networks

Parameter estimation
in sensor networks

Multi-agent
cooperative control
and coordination

Smart grid systems

2

Introduction

Distributed Multi-agent Optimization

Many of these problems can be represented within the general formulation:

A set of agents (nodes) {1, . . . ,N} connected through a network (graph).

The goal is to cooperatively solve

min
x

N∑

i=1

fi (x)

s.t. x ∈ Rn,

fi (x) : Rn → R is a convex
(possibly nonsmooth) function,
known only to agent i .

Alternating Direction Methods

Distributed Optimization for General Objective Functions

Separability of objective function (with respect to a partition of the variables into
subvectors) crucial in the previous setting.
In many applications, objective functions nonseparable.
Agents M = {1, . . . , m} cooperatively
solve

minimize
�

i∈M
fi(x)

subject to x ∈ Rn,

fi(x) : Rn → R is a convex function,
representing local objective function of
agent i, known only to this agent.

We denote the optimal value by f ∗ and
optimal solution set by X∗ (assumed
nonempty).

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

The decision vector x can be viewed as either a resource vector whose subcomponents
correspond to resources allocated to each agent, or a global decision vector which the
agents are trying to compute using local information.

30

Since such systems often lack a centralized processing unit, algorithms for
this problem should involve each agent performing computations locally and
communicating only with neighbors.

3

Introduction

Machine Learning Example

A network of agents i = 1, . . . ,N.

Each agent i has access to local feature vectors Ai and output bi .

System objective: train weight vector x to

min
x

N−1∑

i=1

L(A′ix − bi) + p(x),

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

min
x

N−1∑

i=1

||A′ix − bi ||22 + λ ||x ||1 .

Other examples from ML estimation, low rank matrix completion,
image recovery [Schizas, Ribeiro, Giannakis 08], [Recht, Fazel, Parrilo
10], [Steidl, Teuber 10].

4

Introduction

Literature: Parallel and Distributed Optimization

Lagrangian relaxation and dual optimization methods:

Dual gradient ascent, coordinate ascent methods.

Parallel computation and optimization:

[Tsitsiklis, Bertsekas, Athans 86], [Bertsekas and Tsitsiklis 89].

Consensus and cooperative control:

[Jadbabaie, Lin, Morse 03], [Olfati-Saber, Murray 04], [Boyd et al. 05],

[Olshevsky, Tsitsiklis 07], [Fagnani, Zampieri 09].

Multi-agent optimization

Distributed primal subgradient methods [Nedic, Ozdaglar 07].
Distributed dual averaging methods [Duchi, Agarwal Wainwright 12].
These methods converge at the rate O(1/

√
k), where k is the number of

iterations.

5

Introduction

Literature: Alternating Direction Method of Multipliers

A large literature on alternating direction method of multipliers (ADMM)
due to fast computational performance and distributed-memory, parallel
implementations:

[Glowinski, Marrocco 75], [Fortin, Glowinski 83], [Gabay 83], [Eckstein,
Bertsekas 92].
Recent tutorials: [Boyd et al. 10], [Eckstein 12].
Relation to proximal point algorithm: [Rockafellar 76, 76], [Luque 84].
Decentralized estimation and compressive sensing applications:
[Schizas, Ribeiro, Giannakis 08], [Mota, Xavier, Aguiar, Puschel 11].

6

Introduction

This Talk

We present distributed ADMM-type algorithms for multi-agent
optimization.

Distributed ADMM over undirected networks [Shtern, Wei, and
Ozdaglar 14].
Distributed ADMM over directed networks [Makhdoumi and Ozdaglar
14].

In both cases, we show that these algorithms converge at the faster
rate O(1/k).

7

Introduction

Standard ADMM

Standard ADMM solves a separable problem, where decision variable
decomposes into two (linearly coupled) variables:

min
x,y

f (x) + g(y)

s.t. Ax + By = c .

Consider an Augmented Lagrangian function:

Lβ(x , y , p) = f (x) + g(y)− p′(Ax + By − c) +
β

2
||Ax + By − c ||22 .

ADMM: approximate version of classical Augmented Lagrangian method.

Primal variables: approximately minimize augmented Lagrangian
through a single-pass coordinate descent (in a Gauss-Seidel manner).
Dual variable: updated through gradient ascent.

8

Introduction

Standard ADMM

More specifically, updates are as follows:

xk+1 = argminx Lβ(x , yk , pk),

yk+1 = argminy Lβ(xk+1, y , pk),

pk+1 = pk − β(Axk+1 − Byk+1 − c).

Each minimization involves (quadratic perturbations of) functions f and g
separately.

In some applications, these minimizations are easy (quadratic
minimization, l1 minimization, which arises in Huber fitting, basis
pursuit, LASSO, total variation denoising).

Best known convergence rate: O(1/k) [He, Yuan 11]. 1

1Under stronger assumptions (strong convexity, Lipschitz gradient), ADMM
converges linearly [Goldfarb et. al 10], [Deng, Yin 12], [Hong, Luo 12].

9

Introduction

ADMM for Multi-agent Optimization Problem

Multi-agent optimization can be reformulated in the ADMM framework:

Consider a set of agents V = {1, . . . ,N} in an undirected connected graph
G = {V ,E}.
N (i): agent i ’s neighborhood.

We introduce a local copy xi in Rn for each of the agents and impose
xi = xj for all (i , j) ∈ E .

min
x

N∑

i=1

fi (xi)

s.t. xi = xj , for (i , j) ∈ E ,

!

"# $#

%#

&#

f2(x2)

f1(x1)

f3(x3)

f4(x4)

f5(x5)
x1 = x2

x3 = x4

x1 = x4

x2 = x3

10

Introduction

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents:

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk2

pk121

xk+1
1 = argminx1

f1(x1) + f2(xk2)− (pk12)′(x1 − xk2) + β
2

∣∣∣∣x1 − xk2
∣∣∣∣2

2

11

Introduction

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents:

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk2

pk121

xk+1
1 = argminx1

f1(x1)− (pk12)′x1 + β
2

∣∣∣∣x1 − xk2
∣∣∣∣2

2

11

Introduction

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents:

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk+1

2

pk12 2

xk+1
2 = argminx2

f1(xk+1
1) + f2(x2)− (pk12)′(xk+1

1 − x2) + β
2

∣∣∣∣xk+1
1 − x2

∣∣∣∣2
2

11

Introduction

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents:

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1 2

xk+1
1 xk+1

2

pk12 2

xk+1
2 = argminx2

f2(x2) + (pk12)′x2 + β
2

∣∣∣∣xk+1
1 − x2

∣∣∣∣2
2

11

Introduction

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents:

minx1,x2 f1(x1) + f2(x2)
s.t. x1 = x2.

ADMM applied to this problem yields:

1

xk+1
1 xk+1

2

pk+1
12 2

pk+1
12 = pk12 − β(xk+1

1 − xk+1
2).

11

Synchronous ADMM

Multi-agent Optimization Problem: Reformulation

Requires a globally known order on the agents [Wei, Ozdaglar 12].

Reformulate to remove ordering: technique from [Bertsekas, Tsitsiklis 89].

Rewrite each constraint xi − xj = 0 for edge e = (i , j) as

xi = zij , xj = zji ,

zij = zji .

!" #"

The reformulated problem can be written compactly as

min
x∈RNn,z∈Z

F (x) =
N∑

i=1

fi (xi) (1)

s.t. Dx + z = 0.

where Z = {z ∈ R2Mn | zij = zji , for (i , j) in E}.
Assumption: The optimal solution set of this problem is nonempty.

12

Synchronous ADMM

ADMM for Multi-agent Optimization

a The primal variable x is updated as

xk+1 ∈ argmin
x

F (x)− (pk)′Dx +
β

2

∣∣∣∣Dx + zk
∣∣∣∣2 .

b The primal variable z is updated as

zk+1 ∈ argmin
z∈Z

−(pk)′Hz +
β

2

∣∣∣∣Dxk+1 + z
∣∣∣∣2 .

c The dual variable p is updated as

pk+1 = pk − β(Dxk+1 + zk+1).

The minimizers in the update equations exist (since matrix D ′D has full
rank).

Update in z is a quadratic program with linear constraint: has a closed form
solution and can be computed using communication between neighboring
nodes.

13

Synchronous ADMM

Distributed Implementation

Each agent i maintains xk
i and pk

ij , z
k
ij , for j ∈ N (i).

At iteration k,

a Agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)−
∑

j∈N (i)

(pk
ij)

′xi +
β

2

∑

j∈N (i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

.

The value xk+1
i is sent to all neighbors.

b Agent i computes

zk+1
ij = zk+1

ji =
1

2
(xk+1

i + xk+1
j).

c Agent i computes

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j),

for all neighbors in j in N (i).

xk+1
2

pk
2j , z

k
2j , j = {1, 3, 5}

!

"
#

$

%

14

Synchronous ADMM

Distributed Implementation

Each agent i maintains xk
i and pk

ij , z
k
ij , for j ∈ N (i).

At iteration k,

a Agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)−
∑

j∈N (i)

(pk
ij)

′xi +
β

2

∑

j∈N (i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

The value xk+1
i is sent to all neighbors.

b Agent i computes

zk+1
ij = zk+1

ji =
1

2
(xk+1

i + xk+1
j).

c Agent i computes

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j),

for all neighbors in j in N (i).

xk+1
2

!

"
#

$

%

14

Synchronous ADMM

Distributed Implementation

Each agent i maintains xk
i and pk

ij , z
k
ij , for j ∈ N (i).

At iteration k,

a Agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)−
∑

j∈N (i)

(pk
ij)

′xi +
β

2

∑

j∈N (i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

.

The value xk+1
i is sent to all neighbors.

b Agent i computes

zk+1
ij = zk+1

ji =
1

2
(xk+1

i + xk+1
j).

c Agent i computes

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j),

for all neighbors in j in N (i).

xk+1
2 , xk+1

3

zk+1
23 =

1

2
(xk+1

2 + xk+1
3)

!

" #

$

%

14

Synchronous ADMM

Distributed Implementation

Each agent i maintains xk
i and pk

ij , z
k
ij , for j ∈ N (i).

At iteration k,

a Agent i udpates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)−
∑

j∈N (i)

(pk
ij)

′xi +
β

2

∑

j∈N (i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

.

The value xk+1
i is sent to all neighbors.

b Agent i computes

zk+1
ij = zk+1

ji =
1

2
(xk+1

i + xk+1
j).

c Agent i computes

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j),

for all neighbors in j in N (i).

1

4

5

pk
23 3

xk+1
2 , xk+1

3

pk+1
23 = pk

23 � �
2

�
xk+1

2 � xk+1
3

�

2

14

Synchronous ADMM

Rate of Convergence

Let {xk , zk , pk} be the sequence generated by the synchronous ADMM
algorithm. We define the ergodic averages:

x̄k =
1

k

k−1∑

l=0

xk , z̄k =
1

k

k−1∑

l=0

zk .

We also define the ergodic time average of the residual: r̄k = Dx̄k + z̄k .

Theorem

Let (x∗, z∗, p∗) be a primal-dual optimal solution for problem (1). The following
hold at each iteration k:

|F (x̄k)− F (x∗)| ≤ 1

2βk

(
β2
∣∣∣∣z0 − z∗

∣∣∣∣2 + max
{∣∣∣∣p0

∣∣∣∣2 ,
∣∣∣∣p0 − 2p∗

∣∣∣∣2
})

,

||r̄(k)|| ≤ 1

2βk

(
β2
∣∣∣∣z0 − z∗

∣∣∣∣2 +
(∣∣∣∣p0 − p∗

∣∣∣∣+ 1
)2
)
.

15

Synchronous ADMM

Proof Idea

Using optimality conditions and dual update, we obtain for all p ∈ R2Mn,

F (xk+1)− F (x∗)− p′rk+1 ≤ 1

2β

(∣∣∣∣pk − p
∣∣∣∣2 −

∣∣∣∣pk+1 − p
∣∣∣∣2
)

+
β

2

(∣∣∣∣zk − z∗
∣∣∣∣2 −

∣∣∣∣zk+1 − z∗
∣∣∣∣2
)
.

First bound follows from adding this over a window and using convexity to
generate function values at ergodic averages.

Second bound follows from picking p = p∗ − r̄k

||r̄k || .

One can use
∣∣∣∣pk − p∗

∣∣∣∣2 + β2
∣∣∣∣zk − z∗

∣∣∣∣2 as a Lyapunov function to show
that the sequence {xk , zk , pk} converges to a primal-dual optimal solution
of problem (1).

16

Synchronous ADMM

Network Effect

The performance depends on the network topology through ‖p∗‖.

Theorem

Let (x∗, z∗, p∗) be an optimal primal-dual solution for problem (1). Then,

||p∗||2 ≤ 2C 2

ρ2(L(G))
,

where C is a bound on the norms of all vectors in ∂F (x∗) and ρ2(L(G)) is the
second smallest positive eigenvalue of the Laplacian matrix L(G) of the
underlying graph.2

The performance depends on the algebraic connectivity of the graph: the
more connected it is, the larger ρ2(L(G)) is, the better the performance.

2L(G) is a matrix with elements [L(G)]ij =

{
degree(i) i = j ,
−1 (i , j) ∈ E .

17

Synchronous ADMM

Dependence of Convergence Rate on Network

Theorem

Let (x∗, z∗) be a primal optimal solution for problem (1). Then with initialization
x0 = 0, z0 = 0 and p0 = 0, we have

|F (x̄k)− F (x∗)| ≤ Mβ ||x∗||2
kN

+
4C 2

kβρ2(L(G))
,

∣∣∣∣r̄k
∣∣∣∣ ≤ 1

2kβ

(
C
√

2√
ρ2(L(G))

+ 1

)2

+
Mβ ||x∗||2

kN
,

where M is the number of edges.

18

Distributed ADMM over Directed Networks

Distributed ADMM over Directed Networks

So far, we have assumed communication among nodes bidirectional.

This does not hold when nodes have different local interference patterns and
different power transmission levels.

Question: Can we design a distributed ADMM-like algorithm over directed
networks with fast convergence? [Makhdoumi, Ozdaglar 14]

Every agent updates primal and dual variables based on information
received from incoming links.

Key idea: Normalize the information entering a node with the right weight
so that in the limit the network becomes balanced (i.e., amount of
information entering and leaving a node is equalized).

Two approaches:

Push-sum [Kempe, Dobra, Gehrke 03], [Nedich, Olshevsky 13,14].
Leads to nonlinear updates and a non convergent algorithm for ADMM.

Graph balancing: [Gharesifard, Cortes 09], [Priolo et al. 13], [Rikos et
al. 14].

19

Distributed ADMM over Directed Networks

Weight Balanced Graph

Let G = (V ,E) be a strongly connected directed network.

N in(i): in-neighbors of node i ; N out(i): out-neighbors of node i .

Each node has a weight wi representing how much he scales his incoming
information.

The node weights (w1, . . . ,wN) make the network balanced if for each node
i , total weight of i ’s incoming information is equal to the total weight of its
outgoing information.

kdin
i

wi wk

wl

m

wm

l

︸︷︷︸︸︷︷︸
∑

k∈N out(i) wkdin
i wi

i

=

20

Distributed ADMM over Directed Networks

Distributed Balancing

Laplacian of the directed graph L: Lii = d in
i and Lij = −1, j ∈ N in(i).

The balancing weight vector w = (w1, . . . ,wN)′ is the left eigenvector of L
corresponding to eigenvalue 0, i.e., w′L = 0; or for i = 1, . . . ,N,

(w1, . . . ,wi , . . . ,wN)




−1
...

· · · d in
i · · ·
...

︸︷︷︸
ith column




⇒ d in
i wi =

∑

k∈N out(i)

wk .

We will use a slight variation of [Priolo et al. 13] to design a distributed
balancing algorithm.

For each node i , let 0 < δi <
1
d in
i

.

Let C = I −∆L, where ∆ = diag(δ1, . . . , δN).

21

Distributed ADMM over Directed Networks

Distributed Balancing Algorithm

Each agent i maintains weight vector w̃k
i ∈ RN . At iteration k:

The weight matrix W̃ k = [w̃′
k

1 ; . . . ; w̃′
k

N] is updated as

W̃ k+1 = CW̃ k .

This corresponds to each agent i updating his weight vector w̃k
i using local

information from his in-neighbors:

w̃′
k+1

i = (1− δid in
i)w̃′

k

i +
∑

j∈N in(i)

δi w̃′
k

j .

Agent i sends w̃k+1
i to all his out-neighbors.

22

Distributed ADMM over Directed Networks

Convergence of Balancing Algorithm

Theorem

Starting from W̃ 0 = I , we have

lim
k→∞

W̃ k = lim
k→∞

C k = 1v′ =




v1 v2 · · · vN
v1 v2 · · · vN
...

...
. . .

...
v1 v2 · · · vN


 ,

where v′ is the left eigenvector of C corresponding to eigenvalue 1. Convergence
is exponentially fast with exponent given by the second largest eigenvalue of L.

Proof: Follows from Perron-Frobenius Theorem (C is a primitive matrix since G
is strongly connected).

Hence the weight vector of agent i converges to w̃∞i = [v1, . . . , vN]′.

The balancing weight for agent i is w∞i = δi w̃∞i (i) = δivi .

vi = (1− δid in
i)vi +

∑

j∈Nout(i)

δjvj ⇒ d in
i δivi︸︷︷︸

w∞
i

=
∑

j∈Nout(i)

δjvj︸︷︷︸
w∞

j

23

Distributed ADMM over Directed Networks

Implementation of ADMM over Directed Graphs

Consider the distributed ADMM iteration over undirected networks.

At iteration k, agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)−
∑

j∈N in(i)

(pk
ij)

′xi +
β

2

∑

j∈N in(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

−
∑

j∈N out(i)

(pk
ij)

′xi +
β

2

∑

j∈N out(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

.

This requires node i to receive information from j ∈ N out(i).

1

3

4

5

xk+1
2 2

24

Distributed ADMM over Directed Networks

Implementation of ADMM over Directed Graphs

Consider the distributed ADMM iteration over undirected networks.

At iteration k, agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)−
∑

j∈N in(i)

(pk
ij)

′xi +
β

2

∑

j∈N in(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

.

Fix:

Use only incoming information in the
update. 1

3

4

5

xk+1
2 2

24

Distributed ADMM over Directed Networks

Implementation of ADMM over Directed Graphs

Consider the distributed ADMM iteration over undirected networks.

At iteration k, agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)− wi

∑

j∈N in(i)

(pk
ij)

′xi + wi
β

2

∑

j∈N in(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

.

Fix:

Use only incoming information in the
update.
Scale incoming information by balancing
weight wi .
Update wk

i using distributed balancing in
the same time scale.

1

3

4

5

xk+1
2

w2w2

2

24

Distributed ADMM over Directed Networks

Distributed ADMM over Directed Networks

Each agent i maintains xk
i , w̃

k
i (w k

i) and pk
ij , z

k
ij , for j ∈ N in(i).

At iteration k,

a Agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)− w k
i

∑

j∈N in(i)

(pk
ij)

′xi + w k
i
β

2

∑

j∈N in(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

,

The values xk+1
i and w̃k

i are sent to all out-neighbors.

b For all j ∈ N in(i), agent i computes

zk+1
ij =

1

2
(xk+1

i + xk+1
j),

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j).

d Agent i lets w k+1
i = δi w̃

k+1
i (i), where

w̃′k+1
i = (1− d in

i δi)w̃′k
i +

∑

j∈N in(i)

δi w̃′k
j

1

3

4

5

xk+1
2 2

wk
2 wk

2

25

Distributed ADMM over Directed Networks

Distributed ADMM over Directed Networks

Each agent i maintains xk
i , w̃

k
i (w k

i) and pk
ij , z

k
ij , for j ∈ N in(i).

At iteration k,

a Agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)− w k
i

∑

j∈N in(i)

(pk
ij)

′xi + w k
i
β

2

∑

j∈N in(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

,

The values xk+1
i and w̃k

i are sent to all out-neighbors.

b For all j ∈ N in(i), agent i computes

zk+1
ij =

1

2
(xk+1

i + xk+1
j),

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j),

d Agent i lets w k+1
i = δi w̃

k+1
i (i),

where

w̃′k+1
i = (1−d in

i δi)w̃′k
i +

∑

j∈N in(i)

δi w̃′k
j

1

3

4

5

2xk+1
2

{xk+1
2 , w̃k

2}

25

Distributed ADMM over Directed Networks

Distributed ADMM over Directed Networks

Each agent i maintains xk
i , w̃

k
i (w k

i) and pk
ij , z

k
ij , for j ∈ N in(i).

At iteration k,

a Agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)− w k
i

∑

j∈N in(i)

(pk
ij)

′xi + w k
i
β

2

∑

j∈N in(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

,

The values xk+1
i and w̃k

i are sent to all out-neighbors.

b For all j ∈ N in(i), agent i computes

zk+1
ij =

1

2
(xk+1

i + xk+1
j),

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j),

d Agent i lets w k+1
i = δi w̃

k+1
i (i),

where

w̃′k+1
i = (1−d in

i δi)w̃′k
i +

∑

j∈N in(i)

δi w̃′k
j

1

2

4

5

xk+1
2 3 {xk+1

2 , xk+1
3 }

zk+1
32 = 1

2

(
xk+1

2 + xk+1
3

)

25

Distributed ADMM over Directed Networks

Distributed ADMM over Directed Networks

Each agent i maintains xk
i , w̃

k
i (w k

i) and pk
ij , z

k
ij , for j ∈ N in(i).

At iteration k,

a Agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)− w k
i

∑

j∈N in(i)

(pk
ij)

′xi + w k
i
β

2

∑

j∈N in(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

,

The values xk+1
i and w̃k

i are sent to all out-neighbors.

b For all j ∈ N in(i), agent i computes

zk+1
ij =

1

2
(xk+1

i + xk+1
j),

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j),

d Agent i lets w k+1
i = δi w̃

k+1
i (i),

where

w̃′k+1
i = (1−d in

i δi)w̃′k
i +

∑

j∈N in(i)

δi w̃′k
j

1

2

4

5

xk+1
2 3 {xk+1

2 , xk+1
3 }

pk+1
32 = pk

32 − β
2

(
xk+1

3 − xk+1
2

)

25

Distributed ADMM over Directed Networks

Distributed ADMM over Directed Networks

Each agent i maintains xk
i , w̃

k
i (w k

i) and pk
ij , z

k
ij , for j ∈ N in(i).

At iteration k,

a Agent i updates the primal variable xk
i as

xk+1
i ∈ argmin

xi

fi (xi)− w k
i

∑

j∈N in(i)

(pk
ij)

′xi + w k
i
β

2

∑

j∈N in(i)

∣∣∣
∣∣∣xi − zkij

∣∣∣
∣∣∣

2

,

The values xk+1
i and w̃k

i are sent to all out-neighbors.

b For all j ∈ N in(i), agent i computes

zk+1
ij =

1

2
(xk+1

i + xk+1
j),

pk+1
ij = pk

ij −
β

2
(xk+1

i − xk+1
j),

d Agent i let w k+1
i = δi w̃

k+1
i (i), where

w̃′k+1
i = (1−d in

i δi)w̃′k
i +

∑

j∈N in(i)

δi w̃′k
j

1

2

4

5

xk+1
2 3

{w̃k
3 , w̃k

2}

w̃′k+1

3 = (1 − δ3d
in
3)w̃′k

3 + δ3w̃′k
2

wk+1
3 = δ3w̃

k+1
3 (3)

25

Distributed ADMM over Directed Networks

Rate of Convergence

Let {xk , zk , pk ,wk} be the sequence generated by the Directed ADMM
algorithm. We define the ergodic average:

x̄k =
1

k

k−1∑

l=0

xk .

Assume the sequence {xk} is bounded.

Theorem

Let (x∗, z∗, p∗) be a primal-dual optimal solution for problem (1). The following
hold at each iteration k:

|F (x̄k)− F (x∗)| ≤ 1

k
D,

∑

(i,j)∈E
|x̄ki − x̄kj | ≤

1

k
C ,

where the constants C and D depends on number of nodes N, number of edges
M, ||p∗||, and the second largest eigenvalue of Laplacian.

26

Conclusions

Conclusions and Future Work

We presented distributed ADMM-based algorithms for solving multi-agent
optimization problems over undirected and directed networks.

For general convex cost functions, we showed that these methods converge
at the faster rate O(1/k) and provided rate estimates that highlighted
dependence on network structure.

Simulation results illustrate the superior performance of ADMM (even for
network topologies with slow mixing).

This comes at the expense of a more complex local optimization step.

Extensions and Future Work:

Asynchronous distributed ADMM algorithms [Wei, Ozdaglar 13].
Broadcast-based ADMM algorithms [Makhdoumi, Ozdaglar 14].
Graph balancing for distributed optimization over directed networks.
ADMM-type algorithms for time-varying networks.
Distributed and incremental second order methods [Gurbuzbalaban,
Ozdaglar, Parrilo 14].

27

	Introduction
	Synchronous ADMM
	Distributed ADMM over Directed Networks
	Conclusions

