

Stability of Passivity-Based Control for Power Systems and Power Electronics

Kevin Bacovchin and Marija D. Ilic Department of ECE Carnegie Mellon University Pittsburgh, PA 15213 USA milic@ece.cmu.edu

Open problem LCCC Workshop
Lund, Sweden
October 2014

The problem

- Passivity-based control
 - Nonlinear control method
 - Exploits the intrinsic energy properties of the system dynamics
 - Robust due to the avoidance of exact cancellation of nonlinearities
- Challenge for under-actuated systems
 - Not all state variables can be regulated
 - Desired state variables cannot be all arbitrarily selected
 - Non-directly controlled desired state variables have dynamics
 - Desired dynamics need to be stable for control to work
 - Stability of desired dynamics can depend on
 - which state variables are chosen to be directly controlled
 - parameters and set points

Description of the Problem

State space model: $\dot{\mathbf{x}} = \mathbf{f}(x, u)$

Closed-loop energy functions: \tilde{W}_m '($\tilde{\mathbf{x}}$), \tilde{W}_e ($\tilde{\mathbf{x}}$)

where $\tilde{\mathbf{x}} = \mathbf{x} - \mathbf{x}^D$

 $\frac{\text{Closed-loop}}{\text{dissipation function}}: \qquad \tilde{R}(\tilde{\mathbf{x}})$

Set point equations: $\mathbf{f}_r(x^D) = \mathbf{r}^*$

can derive control law in an automated manner

Lyapunov function:

$$V\left(\tilde{\mathbf{X}}\right) = \tilde{W}_{m}'\left(\tilde{\mathbf{X}}\right) + \tilde{W}_{e}\left(\tilde{\mathbf{X}}\right)$$

$$\frac{dV(\tilde{\mathbf{x}})}{dt} = \frac{dV(\tilde{\mathbf{x}})}{d\tilde{\mathbf{x}}} \frac{d\tilde{\mathbf{x}}}{dt}$$

If $\begin{cases} V(\tilde{\mathbf{x}}) \text{ is positive definite} \\ \frac{dV(\tilde{\mathbf{x}})}{dt} \text{ is negative definite} \end{cases}$

Then $\tilde{\mathbf{x}} \to 0, \ \mathbf{x} \to \mathbf{x}^D$

Passivity-Based

$$\mathbf{u} = \mathbf{g}_1(x, x^{Dn}, r^*)$$

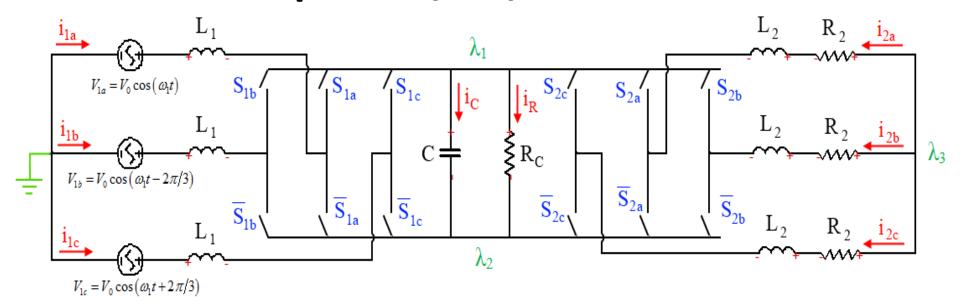
Control Law:

$$\dot{\mathbf{x}}^{Dn} = \mathbf{g}_2(x, x^{Dn}, r^*) \boldsymbol{\angle}$$

Non-directly controlled desired state variables have dynamics, which can go unstable

Source: K. D. Bachovchin, M. D. Ilić, "Automated Passivity-Based Control Law Derivation for Electrical Euler-Lagrange Systems and Demonstration on Three-Phase AC/DC/AC Converter," EESG Working Paper No. R-WP-5-2014, August 2014.

Example: AC/DC/AC Converter



- Choose to directly regulate the direct and quadrature components of the load and source currents
- Desired capacitor charge has dynamics

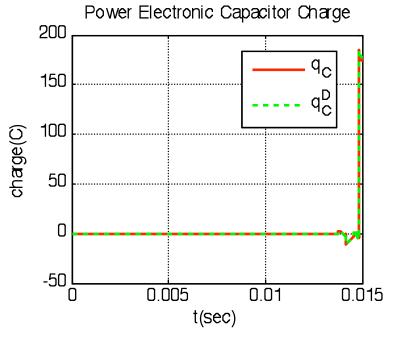
$$\frac{dq_{C}^{D}}{dt} = -\frac{\left(q_{C}^{D}\right)^{2} - C^{2}R_{C}\left(V_{1d}i_{1d}^{*} + V_{1q}i_{1q}^{*}\right) + C^{2}R_{C}R_{2}\left(i_{2d}^{*2} + i_{2q}^{*2}\right) + C^{2}R_{C}R_{1}\left(i_{1d}^{*2} + i_{1q}^{*2} - i_{1d}i_{1d}^{*} - i_{1q}i_{1q}^{*}\right)}{CR_{C}q_{C}^{D}}$$

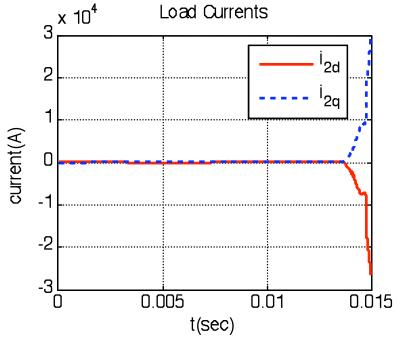
Example: AC/DC/AC Converter

A stable equilibrium for $q_{C}^{\ \ D}$ only exists when

$$\underbrace{V_{1d}i_{1d}^* + V_{1q}i_{1q}^* \ge R_2i_{2d}^{*2} + R_2i_{2q}^{*2}}_{\text{power input by source}} + R_2i_{2q}^{*2}$$

If this condition is violated, then the passivity-based controller will be unstable

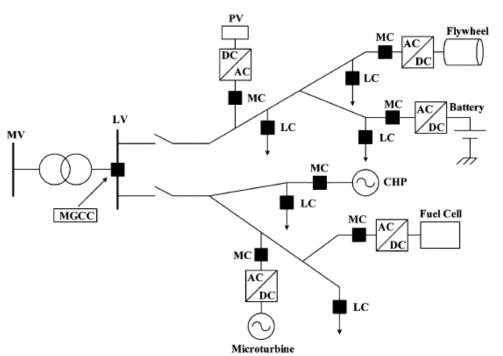


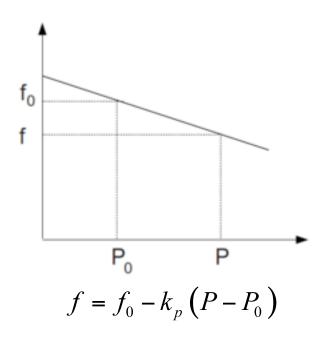


Source: K. D. Bachovchin, M. D. Ilić, "Automated Passivity-Based Control Law Derivation for Electrical Euler-Lagrange Systems and Demonstration on Three-Phase AC/DC/AC Converter," EESG Working Paper No. R-WP-5-2014, August 2014.

Motivation

Analysis and control of microgrids often begin with droop characteristic





Before droop characteristic analysis can be used, the fast dynamics must be stabilized using control with provable performance