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Consider a linear system
x(t+ 1) = Ax(t) + Bu(t)

where A is sparse n x n matrix (the interactions between the states is described
by a graph) and

B=le; - €,

where
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x(t+ 1) = Ax(t) + Bu(t)

CONTROLLABILTY is the possibility of streering the state from the initial
state x(0) = O to an arbitrary final state x(T) = x by applying a suitable input

sequence u(0),u(1),...,u(T—1).
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Assume that the graph is strongly connected and that it has all the self-loops.
Then to have that the resulting system is controllable (generically in the non-
zero entries of A) it is enough that only one state is controlled.

Controlled node




QUESTION: How controllable is the resulting system!?
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One metric for describing the controllability degree is given by the controlla-
bility Gramian

T—| ! x(T)
Wr =  ABBT(AT)'
t=0

v

Interpretation: For driving

x(0)=0 — x(T)=x

where |[X||, = |, we need an input u(0),u(l),...,u(T — 1) with L* energy
xTW7'x.

The energy to drive the state from zero to a norm one state (in the worst
case) is given by
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Wy := > ABB'(AT)"  Controllability Gramian
t=0
Energy = I
)\min(WT)

Small A\, (W7) <> Small controllability degree

Large \in(Wr) €< Large controllability degree




Alternative controllability metrics

T—1
Wr = ABBT(AT)
t=0

>\min (WT)
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Complex Networks

, Few Nodes Cannot Control Symmetric

THEOREM

Assume the matrix A symmetric. Fix any constant 0 < 4 < | and let

n(p) = [{A € MA) = A" < p}

Then

I
>\min WT S Iun(,u)/m
Wn) p(l — )

10



a2 Few Nodes Cannot Control Symmetric
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Hence the number n(y) typically grows linearly in the
network cardinality n.

| n
)\min(WT) < ,uAm H < |
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Complex Networks

-~ Few Nodes Cannot Control Symmetric

Distribution of eigenvalues

r fa(A)

1
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w <l Distribution of eigenvalues
| r fa(A)
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v For fixed number m of control nodes, the controllability degree
decreases exponentially in the network cardinality n.

v To have a fixed controllability degree, number m of control nodes must
grow linearly in the network cardinality n.
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A Example: symmetric line graph
B NA 16, AL RED
X PN =
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T

FA(V) = | — ~arcos (Az_b“> f() =

\ a—2b a+ 2b
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Assume A is a symmetric matrix with g; iid ran- d)
dom variables E[a;] = 0 and E[a7] = 0 /+/n. , .
Then (Wigner’s semi-circle law)
fa(A) — W(A) L
p fa()
.
—ov2  TVH VI o2
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For asymmetric networks the situation is more complex

- For “isotropic” networks (networks with no preferential directions) it seems
that the situation is the same as for symmetric networks, namely they are difficult

to control.

- For “anisotropic” networks (networks with a preferential direction) it seems
that few nodes can indeed control large scale networks.
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THEOREM

Assume the matrix A diagonalizable and let V an eigenvector matrix. Fix any
constant 0 < 4 < | and let

n(p) = [{A € MA) = A" < p}

Then

|
Amin(Wr) < cond(V)? () /m
D Y=

where cond(V) = omax(V)/0min(V) is the condition number of V.

Conseqguence: If the condition number stays bounded in the network
dimension, than the network remains difficult to control.
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EANNNTEA  Example: Asymmetric isotropic line graph
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fa(A)
1 1/2 0 0 ]
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A Llo 12 1 )2
30 0 2 |
VN \

This network is difficult to control as a symmetric network.
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A Example: Asymmetric anisotropic line graph

control‘
ode T—> > > > > > > > > > > > >
'a b 0 ... ... 0 O]
c ab --- --- 0 0
O ¢c a --- --- 0O
A =
O 00 --- --- a b
_o o 0 --- --- ¢ a

A(A):{a+2\&cos<n” Ik) k= I,2,...,n}

Given a, if c is sufficiently larger than b, than this network can be controlled with
finite energy by the node on the extreme regardless the network dimension.

Exploiting spatial instability
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—xtension to more general graphs:
controllable graphs
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-xtension to more general graphs

Ay B, O 0 0
G A B SR 0 0
0 C Ay - .. 0 0
a_ | : :
o 0 0 --- --- Ay, By,
0 0 0 - - Coy A

Given the matrices A;, if the matrices C; are sufficiently larger than the matrices
B;, than this network can be controlled with finite energy by the nodes on the
extreme subgraph regardless the network dimension.
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T —xtension to more general graphs:
A\ Z uncontrollable graphs

-

Assume A is a stochastic matrix (diffusion dynamics, consensus, ... ). This

means that
Al = |

where | is the vector with entries equal to one. Let w be a vector such that
wA=w' w

which means that w is the invariant measure of the Markov chain associated
with A. It is known that the entries of w represent the nodes "centrality" in
the network (the bigger the more important).

Result: If the entries of w are all < <= (all nodes have similar centrality) then
the associated network is difficult to control.

In the symmetric case the entries of w are | /n. C>
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I Controllers positioning

Decoupled control strategy: "Divide et Impera™

Network partitioning Partition )V = {I,... n}into Ndisjoint sets V..., V.
After relabeling of states and inputs, the matrices read as

AI A|N B| 0
A= b L B=
_AN| AN_ _0 BN_

The networks dynamics can be written as the interconnection of N subsystems

of the form interconnections

local dynamics local controls

/"

— N o —
xi(t+ 1) = Axi(t) + ) Apxi(t) + Biui(t),
JEN;

whereie {I,... N} and N;:={j : A; # 0}.
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Controllers positioning

Decoupled control strategy

I. Partition the network into disjoint connected parts.

2. Select boundary nodes as control nodes.
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Decoupled control strategy

3. Apply the inputs

ui(t) == vi(t) — > BIAx;(t)

JEN,

This control law yields N decoupled subsystems

xi(t+ 1) = Ax;(t) + Byv;(t)

4. Choose v; which minimizes the energy to steer the subsystem to the desired
substate.
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Local controllability

0 Amn(War) - 0

0 0 o Amin(WT)

Coupling strength
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Theorem If we choose a decoupled control law
then we obtain

( I o >\max)2

>\min(WT) Z
1A ]|oo | A3

where

Mo = MaX{ Amax(A) i € {1, ... N}} < |
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Controllers positioning
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Theorem If we choose a decoupled control law
then we obtain

(1 — Amax)? local convergence speed
|Alloo||All2,  (local controllability)(coupling strength)

)\min (WT) Z

where

Mo = MaX{ Amax(A) i € {1, ... N}} < |
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i Controllers positioning

Theorem If we choose a decoupled control law
then we obtain

(1 — Amax)? local convergence speed

)\min (WT) Z

|Alloo||All2,  (local controllability)(coupling strength)

where

Mo = MaX{ Amax(A) i € {1, ... N}} < |

For high controllability degree:

I. Partition so that ||A|| are small (weakly coupled subsystems)
2. Select local control nodes so that || A || is small (large local controllability)

With decoupled control, global controllability becomes a local property
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number of subsystems

Amin With the decoupled control strategy

Amin theoretical lower bound
Amin With random positioning

size of subsystems
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a2y Network partition and selection of the

(WS control nodes

Selection of the control nodes
Until the desired number of control nodes have been selected:

l. Bisect the least controllable subsystem via Fiedler partitioning.
2. Include boundary nodes in the control set.
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Examples

J m
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Amin(WT) with the decoupled control strategy
----- Amin(WT) with random positioning
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Examples

Epidemics network with 86 nodes L
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Amin(W7T) with the decoupled control strategy
----- Amin(WT) with random positioning
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Conclusions

Similar results for observability

For symmetric (isotropic) networks we need to control a fixed fraction of nodes
For anisotropic networks it is enough to control a fixed number of nodes

Random positioning works pretty well

Phase transition can be noticed (critical fraction of controlled nodes)

There are a lot of open problems:
Understanding isotropic and anisotropic networks

Controllability of random and of structured graphs

Performance of random positioning

Phase transition

Different metrics
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Conclusions

Controllability

N

Graph theory

Controllability degree

N

Spectral graph theory

38



Thank you
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