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Community detection in networks

Objective: Extract K communities in a network of n nodes from
random observations. K << n. Here finite K, n very large

Observations
1. A graph of interactions / similarities

2. General sampling framework
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Applications

* Social networks: recommendation systems, targeted
advertisement

* Biology: the role of proteins
e Distributed computing: balanced partitions

e Communication networks: caching, pro-active resource
allocation (user mobility)
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— If in the same community: put an edge with probability p
— Else: put an edge with probability g <p
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Stochastic Block Model (SBM)

N

* Network size: n nodes, n tends to oo

e Sparse interaction: p,q = o(1)
— Very sparse p,q ~ 1/n (Massoulie’s talk)
~ Sparse p,q ~ f(n)/n, f(n)=w(1)

e Dense interaction: p,q = O(1)



Performance metrics

Proportion of misclassified nodes under mt: €™ (n)

1. Asymptotic detection: an algorithm detects the clusters if it
does better than the algorithm that randomly assigns nodes

to clusters

2. Accurate asymptotic detection: an algorithm mtis

asymptotically accurate if lim E[¢"(n)] =0
n—oo



Asymptotic Detection in the SBM

a

L L) L] b
* Two communities of equal sizes, sparse case p = qg= —
n

Theorem (Mossel-Neeman-Sly 2012)

If a—b<+/2(a+b),then asymptotic detection is impossible.
Conjectured by Decelle-Krzakala-Moore-Zdeborova 2012

Theorem (Massoulie 2013)

If @ —b > +/2(a + b), then there exists an algorithm leading to
clusters that are positively correlated with the true clusters.




Non-rigorous Spectral Analysis

* Average adjacency matrix

1 1
E|A] = i(a +b)117 + 5(@ — buu®

* Noisy observation: A =E[A]+ X
e Spectral density of noise matrix X (Wigner semicircle law)
p(2)

V2(a +b)



Non-rigorous Spectral Analysis

* Spectral density of the modularity matrix: %(a —bluu’ + X

y P(2)

V2(a+b) 2

= —(a—>
“1 2(& )+a—b



Non-rigorous Spectral Analysis

e Spectral density of the observed matrix:

y P(2)

V2(a+b) =1 2

« Communities are detectable if z; > v2(a + b)
* Method: find z; and the corresponding eigenvector u



Examples of algorithms

e Maximum Likelihood (NP hard problem)
— Exact solution: Belief Propagation
— Compressed sensing: relaxation

e Spectral method
— Provide a rank-K approximation of the adjacency matrix
(+ Trimming + Post-processing)



Open problems

* Very sparse graphs: condition for asymptotic detection with
more than two communities

* General graphs: condition on p, g, n for asymptotically
accurate detection? (this talk)

General graphs: what is the optimal scaling of €™ (n) ?



2. General Sampling Framework



Sampling Framework

* Large data set available: many samples for the interaction of
each pair of nodes

 Sample for a given node pair: Bernoulli with mean p if nodes
are in the same cluster, with mean g otherwise

 Sample budget: T



Sampling Strategies

* Non-adaptive Random Strategies

— The pair of nodes sampled in round t does not depend on past
observations, and is chosen uniformly at random

— S1: sampling with replacement
— S2: sampling without replacement

 Adaptive Strategies

— The pair of nodes sampled in round t depends on past observations

e C(Classical SBM: random sampling without replacement, and
T=nn-1)/2



Objectives

« Performance metric: proportion of misclassified nodes e(n,T)
Asymptotically accurate detection: lim E[e(n,T)] =0
n— oo

* Non-adaptive sampling:
— Necessary conditions on n, T, p, g for the existence of asymptotically
accurate algorithms
— Asymptotically accurate clustering algorithms

* Adaptive sampling:
— Necessary conditions on n, T, p, q for the existence of asymptotically
accurate joint sampling and clustering algorithms

— Asymptotically accurate sampling and clustering algorithms



Fundamental limits

* Non-adaptive sampling:
2(n —2)
n(n —1)

k1(n, T) =T min{K L(q, p), KL(p, q)}

. 2\] AT (n —12) lmm{% 1) (log p(1 — 60)2 n <log(min{§, 1_;}01

n(n —1) q(1—p)

Theorem Under random sampling strategy S1 or S2, for any
clustering algorithm m, we have:

E[e™(n, T)] > éexp(—m(n,T)),



Fundamental limits

* Non-adaptive sampling -- necessary conditions for
asymptotically accurate detection:

% = w(1), %min(KL(q,p), KL(p,q)) = w(1),

* Dense interaction: p,q = ©(1)

T(p—q)°/n=uw(l)

 Sparse interaction: p,q = o(1)

T(p—q)?/(pn) = w(1)



Fundamental limits

* Adaptive sampling:

Theorem For asymptotically accurate detection, we need:

T T
min{p,1 —¢}— =€(1) and —max(KL(q,p), KL(p,q)) =w(1).
n n
] V1
e Example: p = oen q= o5 n
n n
T n

)

— Non-adaptive sampling: — = w(
n

log(n)

T
— Adaptive sampling: — = €)(
n



Algorithms for non-adaptive sampling

» Spectral algorithms (extension of Coja-Oghlan’s algorithm)

From random samples, build an observation matrix
Trimming (remove nodes with too many interactions)

Spectral decomposition (find the largest eigenvalues and
corresponding eigenvectors)

4. Greedy improvement (for each node compare the number of
interactions with the various clusters)



Performance

Theorem Assume that:
2
— T
p n p n
Then with high probability:

—a)? aT
e (n,T) < 8exp (— (pQOg) ozn ) .

* The algorithm is asymptotically accurate under the necessary
conditions for accurate detection in the case of random
sampling

 The necessary conditions for accurate detection are tight!



Algorithms for adaptive sampling

e Spatial coupling idea: find reference kernels and build the
clusters from these kernels

1. Kernels: select n/log(n) nodes and use T/5 samples to classify
these nodes (using the previous spectral algorithm)

2. Select one of remaining nodes. Sample T/3n pairs between
the selected nodes to each kernel. Classify the node.

3. Repeat 2. until no remaining node or budget



Performance

Theorem Assume that:

(Z;qj% = Q(1), %maX(KL(q,p), KL(p,q)) = w(1).

Then with high probability:

AP0, T) < exp (g (KL@p) + KLp.0) )

* The algorithm is asymptotically accurate under the necessary
conditions for accurate detection in the case of adaptive
sampling

 The necessary conditions for accurate detection are tight!



Non-adaptive vs. adaptive sampling

* n=4000
0. ' ' 0.5 - - -
—O©— Adaptive
0.4/ - 04 = Random ||
Q 0.3
)
= 02
0.1}| —©— Adaptive
—%— Random
0 | .
1 2 3 4
T x 10° T x 10°

p =0.01, g=0.005 p =0.1, g=0.05



3. Streaming, Memory-limited
Algorithms



Memory and Streaming issues

e Storing and manipulating the adjacency matrix in RAM could
be impossible (matlab cannot handle 5000 node networks!)

 Data about a node may arrive sequentially (one column at a
time — e.g. recommender systems)

How to deal with

n=10"7
A= n
SBM with f(n) = w(1)
_ f(n)
p=a
n
0!
n



Memory and Streaming issues

e Storing and manipulating the adjacency matrix in RAM could
be impossible (matlab cannot handle 5000 node networks!)

 Data about a node may arrive sequentially (one column at a
time — e.g. recommender systems)

Offline algorithm: return
the clusters after all the
columns has been
observed.

Online algorithm:
classify the node
immediately after its
n column is observed.




Classification with Partial Information

* Observe a proportion y of columns

Conditions ony, f(n) to classify the corresponding nodes or all
nodes asymptotically accurately?

yn
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Fundamental limits

Theorem Assume that /7 f(n) = o(1). Then asymptotic
detection is impossible.

Theorem (i) If there is an algorithm classifying green nodes
asymptotically accurately, then /v f(n) = w(1).

(i) If there is an algorithm classifying all nodes asymptotically
accurately, then vf(n) = w(1).

Remark: if one uses information about green nodes only, then it
is possible to classify these nodes only if 7f(n) = w(1). We have
to use side information provided by red nodes.



Algorithm for green nodes

* Indirect edges through red nodes

\/



Algorithm for green nodes

* Indirect edges through red nodes




Algorithm for green nodes

* Indirect edges through red nodes

Do it only for red nodes connected
to exactly 2 green nodes
(avoid statistical dependence!)



Algorithm for green nodes

* Indirect edges through red nodes

e Result: a new adjacency matrix A’

* Algorithm: spectral method for A9 and A’ + keep the most
informative matrix (with the highest normalized K-th

eigenvalue)



Algorithm for green nodes

* Indirect edges through red nodes

e Result: a new adjacency matrix A’

* Algorithm: spectral method for A9 and A’ + keep the most
informative matrix (with the highest normalized K-th
eigenvalue)

Theorem Assume that \/7f(n) = w(1). The above algorithm
classifies the green nodes asymptotically accurately.



Algorithm for red nodes

e Use the clusters of green nodes as kernels for the red nodes
as in the adaptive sampling algorithm

Theorem Assume that vf(n) = w(1). The above algorithm
classifies the red nodes asymptotically accurately.

The algorithms are optimal (see fundamental limits) — efficient
use of side information provided by red nodes.



Example

n =1000,000 ; p = 0.005, g =0.001

o
~

o
W
T

=7 A9 (from graph by direct edges)
—O— A’ (from graph by indirect edges)

o
\S)
T

o
—
T

Fraction of misclassified nodes

500 1000 1500 2000 2500 3000 3500 4000

Number of green nodes
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Offline Memory-efficient Algorithm

* Memory-Performance trade-off

h(n)n
min(f(n), n'/?)log(n)

log(n)
min(f(n),n'/?)

Theorem \With block size B = , and

memory O(nh(n) + n).
Assume that h(n) = w (

) , then after observing

n

fe (mm(f(n), 717%)

0,1 =0 (s T

n

) columns, we have: w.h.p.




Offline Memory-efficient Algorithm

* Memory-Performance trade-off
* Example: f(n) = log(n)?
— linear memory h(n) =1

— After observing T' = n/log(n), the proportion of misclassified nodes
decays faster than 1/n



Online Memory-efficient Algorithm

* Sequentially treat blocks of columns
— Place the block of B columns in the memory
— Classify the corresponding nodes using previous algorithm

— Merge the obtained clusters with the clusters of the first block, and
erase the block

— Return the classification for the block, and erase it

h(n)n

Th With block size B =
eorem With block size B min(f(n),n!/3)log(n)

memory ©(nh(n)).

Assume that h(n) = w (min(l})(gqi;)nl/?)) ) , then the above

algorithm is asymptotically accurate.

, and

Sublinear memory!



Conclusions

A generic sampling framework extending the SBM
— Necessary conditions for asymptotically accurate detection
— Asymptotically optimal joint sampling and clustering algorithms
— Our results hold in any regime! (Sparse or dense)

Memory limited, streaming algorithm
— Everything can be done with linear memory or even sublinear memory
— Memory-performance trade-off

BTW, similar results for more general models than SBM

Cloud algorithms with communication constraints?



Thanks!
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