Plug-and-Play Control and Optimization in Microgrids

Florian Dörfler ETH Zürich

LCCC Dynamics and Control in Networks Workshop

Paradigm shifts in the operation of power networks

Traditional **top to bottom** operation:

- generate/transmit/distribute power
- hierarchical control & operation

Smart & green power to the people:

- high renewable penetration
- distributed generation & deregulation
- demand response & load control

Microgrids

Structure

- Iow-voltage distribution networks
- grid-connected or islanded
- autonomously managed

Applications

 hospitals, military, campuses, large vehicles, & isolated communities

Benefits

- naturally distributed for renewables
- flexible, efficient, & reliable

Operational challenges

- volatile dynamics & low inertia
- plug'n'play & no central authority

Conventional control architecture from bulk power ntwks

- 3. Tertiary control (offline)
 - Goal: optimize operation
 - Strategy: centralized & forecast

2. Secondary control (slower)

- Goal: maintain operating point
- Strategy: centralized

1. Primary control (fast)

- Goal: stabilization & load sharing
- Strategy: decentralized

Microgrids: distributed, model-free, online & without time-scale separation ⇒ break vertical & horizontal hierarchy

1/19

A preview – plug-and-play control and optimization flat hierarchy, distributed, no time-scale separations, & model-free ...

tertiary control

- Objective I: decentralized proportional load sharing
- 1) Inverters have injection constraints: $P_i(\theta) \in [0, \overline{P}_i]$
- 2) Load must be serviceable: $0 \leq \left| \sum_{\text{loads}} P_j^* \right| \leq \sum_{\text{inverters}} \overline{P}_j$
- 3) **Fairness:** load should be shared proportionally: $P_i(\theta)/\overline{P}_i = P_j(\theta)/\overline{P}_j$

Objective I: decentralized proportional load sharing 1) Inverters have injection constraints: $P_i(\theta) \in [0, \overline{P}_i]$ 2) Load must be serviceable: $0 \leq \left| \sum_{\text{loads}} P_j^* \right| \leq \sum_{\text{inverters}} \overline{P}_j$ 3) Fairness: load should be shared proportionally: $P_i(\theta)/\overline{P}_i = P_j(\theta)/\overline{P}_j$ Theorem: fair proportional load sharing [J. Simpson-Porco, FD, & F. Bullo, '12] Let the droop coefficients be selected proportionally: $\overline{D_i/\overline{P}_i} = D_j/\overline{P}_j \& P_i^*/\overline{P}_i = P_j^*/\overline{P}_j$

The the following statements hold:

- (i) Proportional load sharing: $P_i(\theta)/\overline{P}_i = P_j(\theta)/\overline{P}_j$
- (ii) Constraints met: $0 \le \left| \sum_{\text{loads}} P_j^* \right| \le \sum_{\text{inverters}} \overline{P}_j \iff P_i(\theta) \in [0, \overline{P}_i]$

10/19

Objective II: optimal economic dispatch

minimize the total accumulated generation

minimize $\theta \in \mathbb{T}^n$, $u \in \mathbb{R}^{n_l}$	$f(u) = \sum_{\text{inverters}} \alpha_i u_i^2$
subject to	
inverter power balance:	$P_i^* + u_i = P_i(\theta)$
load power balance:	$P_i^* = P_i(heta)$
branch flow constraints:	$ heta_i - heta_j \leq \gamma_{ij} < \pi/2$
inverter injection constraints:	$P_i(heta) \in \left[0, \overline{P}_i ight]$

Problem is generally non-convex and feasible only if the load is serviceable

• solved offline, in a centralized way, & with a model & load forecast

• solved online, in a decentralized way, & without knowing a model 12/19

Objective II: decentralized dispatch optimization		
Insight: droop-controlled microgrid = decentralized primal algorithm		
Theorem: optimal droop [FD, J. Simpson-Porco, & F. Bullo, '14]		
The following statements are equivalent:		
(i) the economic dispatch with cost coefficients α_i is strictly feasible with global minimizer (θ^*, u^*) .		
(ii) \exists droop coefficients D_i such that the microgrid possesses a unique & locally exp. stable sync'd solution θ satisfying $P_i(\theta) \in [0, \overline{P}_i)$.		
If (i) & (ii) are true, then $\theta_i \sim \theta_i^*$, $u_i^* = -D_i(\omega_{sync} - \omega^*)$, & $D_i \alpha_i = D_j \alpha_j$.		
 similar results hold for the general constrained case 		
 similar results in transmission ntwks with DC flow [E. Mallada & S. Low, '13] & [N. Li, L. Chen, C. Zhao, & S. Low '13] & [X. Zhang & A. Papachristodoulou, '13] & [M. Andreasson, D. V. Dimarogonas, K. H. Johansson, & H. Sandberg, '13] & 		

13/19

Objective II: optimal economic dispatch

minimize the total accumulated generation

minimize $\theta \in \mathbb{T}^n$, $u \in \mathbb{R}^{n_l}$	$f(u) = \sum_{\text{inverters}} \alpha_i u_i^2$
subject to	
inverter power balance:	$P_i^* + u_i = P_i(\theta)$
load power balance:	$P_i^* = P_i(heta)$
branch flow constraints:	$ heta_i - heta_j \leq \gamma_{ij} < \pi/2$
inverter injection constraints:	$P_i(heta) \in \left[0, \overline{P}_i ight]$

Problem is generally non-convex and feasible only if the load is serviceable

In conventional power system operation, the economic dispatch is

• solved offline, in a centralized way, & with a model & load forecast

In an autonomously managed microgrid, the economic dispatch should be

• solved online, in a decentralized way, & without knowing a model 12/19

Secondary frequency control in power networks **Problem:** steady-state frequency deviation ($\omega_{sync} \neq \omega^*$) **Solution:** integral control [Chandorkar et. al. '93, Lopes et al. '05, Bevrani '09, ...] Interconnected Systems **Isolated Systems** • Centralized automatic Decentralized PI control generation control (AGC) $P_{\rm m}$ remainder contro control area areas compatible with econ. dispatch

[N. Li, L. Chen, C. Zhao, & S. Low '13]

Distributed Averaging PI (DAPI) control $D_i \dot{\theta}_i = P_i^* - P_i(\theta) - \Omega_i$ Microgrid $k_i \dot{\Omega}_i = D_i \dot{\theta}_i - \sum_{j \subseteq \text{inverters}} a_{ij} \cdot \left(\frac{\Omega_i}{D_i} - \frac{\Omega_j}{D_j} \right)$ P_1 Primary Primary

- no tuning & no time-scale separation: $k_i, D_i > 0$
- distributed & modular: connected comm. \subseteq inverters
- recovers primary op. cond. (load sharing & opt. dispatch)
- \Rightarrow plug'n'play implementation

14/19

plug-and-play experiments

Plug'n'play architecture flat hierarchy, distributed, no time-scale separations, & model-free

Plug'n'play architecture

experiments also work well in the coupled & lossy case

Experimental validation of control & opt. algorithms in collaboration with Q. Shafiee & J.M. Guerrero @ Aalborg University

Conclusions

Summary

- primary $P/\dot{\theta}$ droop control
- fair proportional load sharing & economic dispatch optimization
- distributed secondary control strategies based on averaging
- experimental validation

Further results

- reactive power control
- virtual oscillator control

Open conjecture

• solve these problems without comm

Acknowledgements

S. Dhople

J. Zhao

19/19

B. Johnson

S.Y. Caliskan

H. Bouattour

S. Zampieri

P. Tabuada

B. Gentile

J. Guerrero

M. Rungger

M. Todescato

