
Control issues in warehouse-
scale datacenters

john wilkes
Cloud Control Workshop, Lund, Sweden
May 2014

The problem
high utilization => resource sharing

From: CPI2: CPU performance isolation for
shared compute clusters. EuroSys’13.

The problem
resource sharing => interference

Interference
happens tens
of thousands
of times per
day

Our solution: CPI2
a simple control system

1. Monitor Cycles Per Instruction (CPI)

2. Learn anomalous behaviors

3. Identify a likely antagonist

4. Throttle it to shield victims

● It's cheap: < 0.1%
CPU overhead,
invisible to users

● It's stable (across
time and space)

● It correlates well
with L3 cache miss
rate

Why use CPI?

Gathering CPI

Build a CPI profile for a job
● per-cluster, per-platform
● mean (µ) & stddev (σ)

<-- μ + σ

<-- μ

<-- μ + 2σ

<-- μ + 3σ

outliers => victims

Gathering CPI

agent
task
task
task

agent
task
task
task

agent

task

agent
task
task
task

agent
task
task
task

CPI sample-
aggregator

CPI
samples

machines

task

task

Gathering CPI

agent
task
task
task

agent
task
task
task

agent

task

agent
task
task
task

agent
task
task
task

CPI sample-
aggregator

cluster
scheduler

CPI
samples

smoothed,
averaged,
CPI_spec

machines

task

task

Using CPI to detect an anomaly

agent
task
task
task

agent
task
task
task

agent

task

agent
task
task
task

agent
task
task
task

CPI sample-
aggregator

cluster
scheduler

CPI_specs

machines

task

task

Using CPI to detect an anomaly

agent
task
task
task

agent
task
task
task

agent

task

agent
task
task
task

agent
task
task
task

machines

task

task

antagonist

victim

Now what?
Goal: reduce the effect of the antagonist

Let’s throttle the antagonist!
● CPU hard-capping: 0.1 core for 5 minutes

Restrictions:
● only throttle batch jobs
● only help “important” victims

A motivating example

throttling period

What could possibly go wrong?

A not so good example

throttling periods

A control system to achieve:
● failure tolerance (of server, of cluster)
● equal load (e.g., qps)
● equal performance (e.g., latency)

Maybe batch-only was a bad idea?
After all: LS tasks have load balancing

Maybe batch-only was a bad idea?
After all: LS tasks have load balancing

Load
balancer

Service

Overload
What does your system do?

Tip: don’t send all traffic to the
first place on your list

Maybe batch-only was a bad idea?
After all: LS tasks have load balancing

Cascading failures
1. Overload-induced outage

○ busy cluster => oops

2. No worries! Shunt load elsewhere!
○ busy cluster => much oops (repeat)
○ e.g., Gmail outage, 2009-02-24

Maybe batch-only was a bad idea?
After all: LS tasks have load balancing

Load
balancer

Service

Interacting control loops

1. Load-placement
● few-second response times

2. Number-of-workers
● few tens-of-seconds response times

3. Add a little signalling delay ...

Auto-scaling to meet a job deadline

not
ideal

ideal

No worries!
Just add a few more knobs ...

Upload malformed configuration
What does your system do?

Tip: don’t just stop working

Delegation

Image source: Hareesh Nagarajan

GMail circa 2008

your browser

Model building is hard

Load

CPU, RAM usage
(arbitrary units)

Is it doing what it should be doing?

Maybe more
monitoring would
help?

“The scariest outage ever”
15-20% of Google's
production fleet was affected

mkdir –p –m 0755 $release/usr/bin

Photo credit: Alex E. Proimos / Creative Commons

umask 027

http://www.flickr.com/photos/proimos/4199675334/
http://creativecommons.org/licenses/by/2.0/deed.en

It’s 3am and your pager goes off
-- are we in trouble?
-- are we about to get into trouble?

➔ what should you do about it?

Delegation is hard
be careful what you ask for

Summary
Control systems do not run in isolation

1. Do no harm

2. Make things better

3. Assume the world is out to get you
“any sufficiently advanced incompetence is
indistinguishable from malice”

-- Grey's Law

