Optimizing Peak Power-Related Costs in Cloud Data Centers

Bhuvan Urgaonkar

Department of Computer Science and Engineering
Penn State University

Collaborators: C. Wang, G. Kesidis

Data Centers Consume Lots of Power!

f treated as a country, *fifth* in the world for electricity use ouble in next 5 years, imposing a peak load of over 20 GW on the grid

Monthly Cost of 10MW Data Center

Cap-ex, Duke Energy Op-ex, ver & 12 yr infrastructure mortization (Tier-2)

All cost are amortized at a monthly granularity

Provisioned Peak Power Impact on Cap-ex

Consumed Peak Draw Contribution to Op-Ex (Explicit Peak-based Tariff)

Duke Utility Tariffs (12 \$/KW, 5 c/KWh)

Note: Tariff rates collected from Duke Energy Utility.

onsumed Peak Draw Contribution to Op-Ex (Implicit)

eal-time pricing with high "coincident" peak charges

eak draw affects both Cap-Ex and Op-E

Optimizing Cap-Ex and Op-Ex

Cap-Ex optimization: How much capacity to provision for the next several years?

- An offline problem

Optimizing Cap-Ex and Op-Ex

Cap-Ex optimization: How much capacity to provision for the next several years?

- An offline problem

Op-ex: How much peak to admit for this billing cycle?

- An online control problem
 - Control windows may be in the minutes (or even seconds)
- Complementary problem: how to operate cost-effectively within a specified power capacity (as determined by cap-ex optimization)

Demand Response: An Important Set of Techniques for Optimizing Power Costs

Demand Response Knobs in a Data Center

emporal Knobs FS, Load scheduling or deferral)

Demand Response Knobs in a Data Center

Spatial Knobs quest redirection, oad migration)

Demand Response Knobs in a Data Center

Overview of our Work

This talk

Op-ex optimization using IT control knobs for a peak-based utility pricing scheme

ther work (happy to discuss offline)

- Cap-ex improvements via provisioning of batteries and local generations of sources
- Op-ex optimization:
 - Real-time utility pricing schemes
 - Control of batteries and local generation sources

A Simple Model for IT-based DR

espite their diversity, IT knobs can be viewed ropping and/or delaying some power demand at the compression performance degradation / revenue loss.

ample: DVFS/Scheduling

A Simple Model for IT-based DR

espite their diversity, IT knobs can be viewed ropping and/or delaying some power demand at the compression performance degradation / revenue loss.

ample: DVFS/Scheduling

Example 1: MPEG Video Server

rate Power/
bps) stream
(watt)

000 3.0

500 1.5

Source: Y. Sharrab et al., MMSys'13 and Wikipedia

E.g., Source on revenue impact: "Video stre quality impacts viewer behavior," Krishna a Sitaraman, IEEE/ACM TON, 2013

Example 2: Search Engine

Concave Quality Profile of Bing Search

ource: Y. He et al.,
SOCC'12

Normalized Processing Time

Degrade quality of query

Demand dropped

Example 3: Delay-tolerant, Batch

Example 3: Delay-tolerant, Batch

Source: S. Govindan et al., ASPLOS'12

Op-ex Optimization Problem

How to use IT-based dropping or delaying of power demand to optimize op-ex vs. performance/revenue loss trade-off?

Much Related Work for Real-time Pricing

al-time pricing

	Adversarial power demands	Stochastically known power demands
sing IT-based DR	Z. Liu et al., Sigmetrics'13, robust optimization, avoid coincident peak	
sing batteries		R. Urgaonkar et al., Sigm'11, Lyapunov optimization, distance from optimal inversely prop. to battery size
		P. Van de Ven et al., Energy'11, residential energy storage, MDP

Much Related Work for Real-time Pricing

al-time pricing

	Adversarial power demands	Stochastically known power demands
sing IT-based DR	Z. Liu et al., Sigmetrics'13, robust optimization, avoid coincident peak	Current work (SDP formulation)
sing batteries		R. Urgaonkar et al., Sigm'11, Lyapunov optimization, distance from optimal inversely prop. to battery size
		P. Van de Ven et al., Energy'11, residential energy storage, MDP

But Less for Peak-based Pricing

k-based pricing

	Adversarial power demands	Stochastically known power demands
sing IT-based DR	Current work: CR=2 for time- varying energy prices; CR=2-1/T for fixed energy prices	Current work (SDP formulation, gSBB heuristic)
sing batteries for DR	A. Bar-Noy et al., WEA'08, threshold-based, CR of H_n (=7.84 if 30-min time-slot)	

But Less for Peak-based Pricing

k-based pricing

	Adversarial power demands	Stochastically known power demands
sing IT-based DR	Current work: CR=2 for time- varying energy prices; CR=2-1/T for fixed energy prices	Current work (SDP formulation, gSBB heuristic)
sing batteries for DR	A. Bar-Noy et al., WEA'08, threshold-based, CR of H_n (=7.84 if 30-min time-slot)	Current work (SDP formulation, gSBB heuristic)

Online "Dropping" of Power Demand

Lets begin by assuming that the "knob" available to the data center is that of dropping part of the power demand

- Dropped demand never returns

Recall examples of a video streaming server and a search engine

Demand Response to Optimize Peak-based Utility Bill

How to determine the peak demand to admit in an *online* fashion?

Offline Formulation for Dropping Demand

Demand dropping

- $l_{drop}(x)$: Dropping demand v.s. Performance/Revenue loss
- Discretized optimization horizon T: A billing cycle (typically a mont
- Known demand time series $\{p_t\}_{t=1}^T$

$$s.t.$$
 $p_t - a_t - d_t = 0, \forall t$ New demand either admitted or dropp $y_{max} \geq a_t, \forall t$ Peak of admitted demand

No information about future demand Peak charge + time-varying energy price

No information about future demand Peak charge + time-varying energy price $l_{drop}(x) = k_{drop}x$

Pemma. The optimal solution has a demand dropping threshold $\ heta$ of the following the denote as \hat{p}_t the t-th largest demand value in $\{p_t\}_{t=1}^T$ and as $\hat{\alpha}_t$ or or or esponding energy price, then $\theta=\hat{p}_n$ here $\beta-\sum_{t=1}^{n-1}(k_{drop}-\hat{\alpha}_t)\geq 0$ and $\beta-\sum_{t=1}^{n}(k_{drop}-\hat{\alpha}_t)\leq 0$.

No information about future demand Peak charge + time-varying energy price $l_{drop}(x) = k_{drop}x$

Prima. The optimal solution has a demand dropping threshold θ of the follows: If we denote as \hat{p}_t the t-th largest demand value in $\{p_t\}_{t=1}^T$ and as $\hat{\alpha}_t$ briesponding energy price, then $\theta = \hat{p}_n$

here $\beta - \sum_{t=1}^{n-1} (k_{drop} - \hat{\alpha}_t) \ge 0$ and $\beta - \sum_{t=1}^{n} (k_{drop} - \hat{\alpha}_t) \le 0$.

Decision-making. Admit

, drop

$$\theta_0 = 0$$

At time t, sort $p_1, p_2, ..., p_t$ into $\hat{p}_1, \hat{p}_2, ..., \hat{p}_t$ such that $\hat{p}_1 \geq \hat{p}_2 \geq ... \geq \hat{p}_t$.

Update θ_t as follows: Find index n such that $\beta - \sum_{t=1}^{n-1} (k_{drop} - \hat{\alpha}_t) \ge 0$

and $\beta - \sum_{t=1}^{n} (k_{drop} - \hat{\alpha}_t) \leq 0$; set $\theta_t = \hat{p}_n$.

Decision-making. Admit $\min\{p_t, \theta_t\}$, drop $[p_t - \theta_t]^+$.

'): The CR of $\emph{ON}_{ exttt{Drop}}$ can be improved if $heta_0$ can be trained using historical data.

Theorem. ON_{Drop} offers a competitive ratio of 2 under peak-based pricing.

Stochastic Control for Dropping Demand

In many cases, workloads can be predicted

- Often via Markovian models

Can develop a SDP that leverages such predictive models

Offline formulation:

$$\min_{\{a_t\},\{D_t\}} E \left\{ \beta y_{max} + \sum_{t=1}^{T} (\alpha_t a_t + l_{drop}(d_t)) \right\}$$

Unconventional state space due to *sum* + *max*

Stochastic dynamic programming?

Sum + Max

Sol: Track peak-so-far by state y_t

$$y_{t+1} = \max\{y_t, a_t\}$$

Stochastic Control for Dropping Demand

SDP_{Drop} optimality rules:

$$V_{t}(y_{t}, p_{[t-1]}, \alpha_{[t-1]}) = \min_{\{A_{t}\}, \{D_{t}\}} E \left\{ \alpha_{t} a_{t} + l_{drop}(d_{t}) + V_{t+1}(y_{t+1}, p_{[t]}, \alpha_{[t]}) \right\}$$
$$\mid P_{[t-1]} = p_{[t-1]}, \Lambda_{[t-1]} = \alpha_{[t-1]}$$

s.t.
$$y_{t+1} = \max\{y_t, a_t\}$$

 $p_t - a_t - d_t = 0$

Lemma. Under stage-independent demand $SDP_{\rm Drop}$ has the following threshold-based optimal control policy :

$$(a_t^*, d_t^*) = \begin{cases} (\phi_t p_t, p_t - \phi_t p_t), & \text{if } \phi_t \le 1\\ (p_t, 0), & \text{if } \phi_t > 1 \end{cases}$$

Making the model a bit more complex

What if dropping alone does not capture DR behavior?

Recall example of MapReduce ...

Offline Problem Formulation

Peak cost delaying
$$l_{delay}(x,t)$$
: Delay up to τ time slots dropping $l_{drop}(x)$ Energy cost t Dropping cost t Dropping cost t Dropping t Dropping cost t Dropping t Dro

s.t.
$$p_t - a_{t,t} - d_{t,t} = r_{t,t+1}, \forall t$$

 $r_{i,t} - a_{i,t} - d_{i,t} = r_{i,t+1}, i \in h(t), \forall t$
 $r_{t-\tau,t} - a_{t-\tau,t} - d_{t-\tau,t} = 0, \forall t$
 $r_{i,T+1} = 0, i \in h(t)$

$$y_{max} \ge \sum_{i \in h^+(t)} a_{i,t}, \forall t$$

New demand either admitted or dropp

Pending demand either admitted or dr

Delayed for τ time slots: Admit immed

No more delay at the end of billing cyc

Peak of admitted demand

Stochastic Control

SDP formulation

- Track all pending demand if $l_{delav}(x,t)$ is non-linear w.r.t. t
- Curse of dimensionality: $O(RL_p^{2(\tau+2)}L_aT)$

$$r_t = (r_{t-\tau,t}, r_{t-\tau+1,t}, ..., r_{t-1,t}, y_t)$$

$$f_t(s_t, p_{[t-1]}, \alpha_{[t-1]}) = \min_{\{A_t\}, \{D_t\}} E\{\alpha_t a_t^+ + l_{drop}(d_{t,t}) + \sum_{i \in h(t)} l_{delay}(a_{i,t}) + \sum_{i \in h(t)} l_{delay}$$

$$V_{t+1}(s_{t+1}, p_{[t]}, \alpha_{[t]}) \mid P_{[t-1]} = p_{[t-1]}, \Lambda_{[t-1]} = \alpha_{[t-1]}$$

Stochastic Control: Curse of Dimensionalit

te vector

$$(r_{t-\tau,t}, r_{t-\tau+1,t}, ..., r_{t-1,t}, y_t, p_t)$$

Delay / time slots	Num. of states
0	L_p^{-2}
1	$L_p^{\ 3}$
2	L_p^{-4}
au	$L_p^{2+ au}$

Curse of dimensionality

 L_p : Discretization level

Need to track all pending demands!

Stochastic Control: Linear delay cost

Scalable Approx. for SDP

SDP_{Lin}

- Linear approximation for $l_{delay}()$
- $O(RL_p^5L_\alpha T)$

$$s_t = (r_t, y_t)$$

$$V_t(s_t, p_{[t-1]}, \alpha_{[t-1]}) = \min_{\{A_t\}, \{D_t\}} E\{\alpha_t a_t + l_{drop}(d_t) + l_{delay}(r_t) + V_{t+1}(s_{t+1}, p_{[t]}, P_{[t-1]}) = p_{[t-1]}, \Lambda_{[t-1]} = \alpha_{[t-1]}\}$$

s.t.
$$y_{t+1} = \max\{y_t, a_t\}$$

 $r_{t+1} = (p_t - d_t) - a_t - r_t$

What if SDP does not scale?

A scalable technique based on a "gSBB" model for power demand

gSBB-based Control

Raw demand is modeled as "generalized stochastically bounder ourstiness" curve

$$\{(\gamma, \phi(\gamma\tau^*)) \mid \gamma > \mu\}$$

A queue whose arrivals are the "raw" demands and is served a rate γ will have backlog Q_γ such that

$$Pr(Q_{\gamma} \ge \gamma \tau^*) \le \phi(\gamma \tau^*)$$

gSBB-based Control

How to obtain γ ?

gSBB-based Control

Examples of $C(\tau)$

$$\min_{\gamma > \mu} T\mu \int_0^\infty C(\tau) dF_{\gamma}(\tau) + \beta \gamma - \phi(\gamma \tau)$$

Selected Simulation Results

Cost benefits of demand response via abstract demand dropping and delaying

From abstract control to real control: A case study

A Hierarchical Demand Response Framework

Actual

contro

A Hierarchical Demand Response Framework

races Google, Facebook, MediaServer, Synthetic

eak-based pricing

Under peak-based pricing, our approaches provide significa cost savings for real-world workloads w/o losing much "rav demand.

(c) anollie

(u) syndiedd

SDP and ON_{Drop} achieve near-optimal cost-saving except for Synthetic (flash crowd); gSBB is able to handle workload unpredictability.

(c) anosie

(u) əynuncuc

A Case Study: Media Server

anslation.

Degrade QoS (trans. bitrate) to meet dropping cision as much as possible;

Otherwise, reject some requests to compensate the target dropping power that is unmet.

Conclusions and Open Problems

- Peak power draw significantly impacts both cap-ex and op-ex Algorithms and empirical case studies from our work on such optimization using IT knobs
 - Key idea: Abstract myriad IT knobs as dropping or delaying power demand at the cost of performance/revenue loss
 - Results for both adversarial inputs and stochastically known inputs
- Plenty of scope for more work (both theoretical and empirical) or op-ex optimization for peak-based pricing schemes, e.g.,:
 - Competitive analysis for real-time pricing using batteries for DR
 - Competitive analysis for peak-based pricing using IT knobs and/or batteries when using both "dropping" and "delaying" of power demand

More details at: http://www.cse.psu.edu/~bhuvan

ESDs in Current Datacenters

Ragone Plot

Hybrid ESD solution may be desirable

Multi-level Multi-technology ESDs

