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Data Centers Consume Lots of Power!

f treated as a country, fifth in the world for electricity use
ouble in hext 5 years, imposing a peak load of over 20 GW on the grid



Monthly Cost of 10MW Data Center
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Provisioned Peak Power Impact on Cap-ex

e -7 oS RN
Utility L7 N Power
Substation , \I\nfr'as’rr'uc‘l'ur‘e
|
/ . \
Diesel . N 5| Auto Transfer
1$/W ! i | — | & \
Generator $ I ' : l Switch (ATS) 1
|
UPS
. I
Ba**erYO6$/W‘\ .................................................................................................. L.
Power \

Distributiong 34$/w \\
Unit (PDV)

Server

Racks 0.2$/W




onsumed Peak Draw Contribution to Op-Ex
(Explicit Peak-based Tariff)
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onsumed Peak Draw Contribution to Op-Ex
(Implicit)

al-time pricing with high "coincident” peak charges

eak draw affects both Cap-Ex and Op-E

>
Total energy consumption /



Optimizing Cap-Ex and Op-Ex

Cap-Ex optimization: How much capacity to provision for the
next several years?
- An offline problem



Optimizing Cap-Ex and Op-Ex

Cap-Ex optimization: How much capacity to provision for the
next several years?
- An offline problem

Op-ex: How much peak to admit for this billing cycle?
- An online control problem
= Control windows may be in the minutes (or even seconds)

- Complementary problem: how to operate cost-effectively within a
specified power capacity (as determined by cap-ex optimization)



Demand Response: An Important Set of
Techniques for Optimizing Power Costs
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Demand Response Knobs in a Data Center

emporal Knobs

S, Load scheduling
or deferral)
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Demand Response Knobs in a Data Center

Spatial Knobs
quest redirection,
oad migration)




Demand Response Knobs in a Data Center
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Overview of our Work

“his talk

- Op-ex optimization using IT control knobs for a peak-based utility
pricing scheme

ther work (happy to discuss of fline)

- Cap-ex improvements via provisioning of batteries and local generati
sources
- Op-ex optimization:
= Real-time utility pricing schemes
= Control of batteries and local generation sources



A Simple Model for IT-based DR

2spite their diversity, IT knobs can be viewed
opping and/or delaying some power demand at the cc
performance degradation / revenue loss.

imple: DVFS/Scheduling
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A Simple Model for IT-based DR

2spite their diversity, IT knobs can be viewed
opping and/or delaying some power demand at the cc
performance degradation / revenue loss.
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Example 1: MPEG Video Server
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Example 2: Search Engine

Concave Quality Profile of Bing Search
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Example 3: Delay-tolerant, Batch
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Example 3: Delay-tolerant, Batch
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Op-ex Optimization Problem

How to use IT-based dropping |
or delaying of power demand
to optimize op-ex vs.
performance/revenue loss

trade-off? 4
I N
o




Much Related Work for Real-time Pricing
'

. Stochastically known power
Adversarial power demands Y P
demands

Z. Liu et al., Sigmetrics’13,
robust optimization, avoid
coincident peak

ing IT-based
DR

R. Urgaonkar et al., Sigm’11,
Lyapunov optimization, distance
from optimal inversely prop. to
battery size

P.Van de Ven et al., Energy’11,
residential energy storage, MDP

ing batteries

21



Much Related Work for Real-time Pricing
'

. Stochastically known power
Adversarial power demands Y P
demands

Z. Liu et al., Sigmetrics’13,
robust optimization, avoid Current work (SDP formulation)

coincident peak

ing IT-based
DR

R. Urgaonkar et al., Sigm’11,

Lyapunov optimization, distance
_ . from optimal inversely prop. to
ing batteries battery size

P.Van de Ven et al., Energy’11,
residential energy storage, MDP

22



But Less for Peak-based Pricing

. Stochastically known power
Adversarial power demands Y P
demands

sing IT-based
DR

A. Bar-Noy et al., WEA'0S,
threshold-based, CR of H_ (=7.84
if 30-min time-slot)

sing batteries
for DR

23



But Less for Peak-based Pricing

. Stochastically known power
Adversarial power demands Y P
demands

Current work: CR=2 for time-
varying energy prices; CR=2-1/T
for fixed energy prices

A. Bar-Noy et al., WEA'0S,

threshold-based, CR of H_ (=7.84
if 30-min time-slot)

Current work (SDP
formulation, gSBB heuristic)

sing IT-based
DR

Current work (SDP
formulation, gSBB heuristic)

sing batteries
for DR

24



Online "Dropping” of Power Demand

Lets begin by assuming that the "knob" available to the data
center is that of dropping part of the power demand
- Dropped demand never returns

Recall examples of a video streaming server and a search
engine



Demand Response to Optimize Peak-based
Utility Bill

How to determine the peak
demand to admit in an
fashion?




Offline Formulation for Dropping Demand

Demand dropping

- larop(2) : Dropping demand v.s. Performance/Revenue loss

- Discretized optimization horizon T: A billing cycle (typically a mont
- Known demand time series {Pt}t

Energy cost
@+ S {00t lary (1)
{A}{D:} *

—a; —dy = 0,Vt  New demand either admitted or dropg

YUmaz = O Vi Peak of admitted demand



Online Control: ON,.,

No information about future demand
Peak charge + time-varying energy price

P T Drop
AN\ Ophmal

Q‘eshold
Admit




Online Control: ON,.,

No information about future demand
Peak charge + time-varying energy price larop(%) = Karopt

xmma. The optimal solution has a demand dropping threshold 6 of the follc
rm: If we denote as p, the #-th largest demand value in {13"1*-}?:1 and as g,
rresponding energy price, then § = p,,

here 3 — S0 (kapop — &) > 0 and B — Y1 (Karop — ) < 0.

P T Drop

| {hr‘eshold
Admit
>t




Online Control: ON,.,

No information about future demand
Peak charge + time-varying energy price larop(%) = Karopt

xmMma. The optimal solution has a demand dropping threshold 6 of the follc
rm: If we denote as p, the #-th largest demand value in {13"1*-}?:1 and as g,
rresponding energy price, then § = p,,

here 9 Zﬂ l(kdmp — fi’fi) >0 andf:‘j} - Z?:l('l':ffi"ﬂﬁ - &ﬂ) <0.

Break-even
Drop Obj(0) point
‘A Optimal Dropping ¢ ‘r| Peak ¢
/\ Thr‘eshold dominate domin
— > 0

PT ... Pugi Pn Dn—1 D2 D1



Online Control: ON,.,

Decision-making. Admit , drop

0o = 0
At time ¢, sort P1, P2, ---, Pt into D1, P2, ---, D¢ such thatpr > po > ... > Py .
Update 6, as follows: Find index n such that/3 — Zf‘___ﬁ(kmw —ay) >0
and 3 — > " (Kagrop — ) <0 ;set b, =p, .
Decision-making. Admit min{p;, 0:} , drop [p: — 6:]™.

): The CR of ONj,.,, can be improved if 6y can be trained using historical data

Theorem. ONp,,, Offers a competitive ratio of 2 under peak-based pricing.




Stochastic Control for Dropping Demand

In many cases, workloads can be predicted
- Often via Markovian models

Can develop a SDP that leverages such predictive models

Offline formulation: . .
Stochastic dynamic

in  EA5yar T (oya, + 1 ronld rogramming?
min | {BYmaz + 211 (e + larop(di)) § prog ' 8
Sum + Max
. $
Unconventional state space Sol: Track peak-so-fa
due to sum + max by state Ut

Yt+1 = ma’X{yta at}



Stochastic Control for Dropping Demand

SDPy.o, optimality rules:

ﬂ(ytap[a—l]aﬂi[:—l]) = min L {Uft-‘-’-‘it: T 'Erimp(df) T LE+1(34’¢+1$P[1]=H[¢])

{A: b {D:}
\ P[:—l] = 'P[:—l];ﬂ[a—l] = ﬂ“[a—l]}
st Y1 = maX{yt, Clt} Lemma. Under stage-independent demand
SDPp,,, has the following threshold-based
pe — @y — dy =0 optimal control policy :

4

(oo — upy), ity <1

ay,d;) = 4 .
(@, ) (p1,0). ifg, > 1




Making the model a bit more complex

What if dropping alone does

not capture DR behavior?

Recall example of MapReduce ...

i



Offline Problem Formulation

Nowond delaying lgeq(z,t): Delay up to 7.time <late

Peak cost Dropping cost
Hdr‘oppmg ) F

St. Dy — Gt — dt,t = Ttt+1, vi New demand either admitted or dropp

it — Qg — diy = Ti41,1 € h(t), ¥t Pending demand either admitted or dr
Pimrt = Qg — dp—gy = 0, V1 Delayed for z time slots: Admit immed
rir+1 = 0,1 € h(t) No more delay at the end of billing cyc
Ymaz 2 D ich+(p) Girts Ve Peak of admitted demand



Stochastic Control

SDP formulation

- Track all pending demand if /,,,, (x.,?) is hon-linear w.r.t. ¢

- Curse of dimensionality: O(RL 2(+2)L T)

t = (Tt—T,t, Ft—r41ty ooy Tt—1.t; yt)

(84, Ppe—1), a—1)) = {411}11{1}} }E{ﬂfﬂt + Larop(de ) + Z Ldetay (@i t)+
t ich(t)

Vier (Ses1. 01 o) | Pe—1) = Pje—1), Ap—1) = o).



Stochastic Control: Curse of Dimensionalid

te vector
Quadratic delay

t—7ts Tt—7+ 1ty -+ Tt—=1,¢ Yt Pt) Lietay (6,1) = kxi

Delay / time Num. of
slots states

0

Admit

Delay cost 0 K(ri_gp1 —ri_g4)1? kre_042% + kr,

Curse of
dimensionality

Need to track all pending
demands!

Lp: Discretization level



Stochastic Control: Linear delay cost

Linear delay cost
ldelay (X,t) = kxt

I
|
I
I
' - 2
| ' T=
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| I \'\
Admit I I I
I I I
I I i J
72 1 ' +1
Delay cost 0 k(rt—Q,t—l — Tt—Q,t)l th—Q,tZ + /Wt—l,tl > Equivalent
transformation

0 k(ri—2t-1 — Te—2t+7t-04)1 kri_o 1 + kry_1,1

0 kri_g.-11 k(ri—gs 4 71-14) > Only one state v
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Scalable Approx. for SDP

SDP, .
- Linear approximation for /4, ()
- O(RLL,T)

St = (Tta yt)

VilSe: Pie—1p, 0i—1)) = {Aﬂ}ll{% }E{‘thﬂf + Larop(dy) + laetay(Te) + Vier (Se41. Py

U:’[.t 1] = Plt— A[a 1] = Q- 1]}

s.t. Yit+1 = max{yt, at}

Tt41 = (Pt—dt> — Qg — T



What if SDP does not scale?

A scalable technique based on

a "gSBB" model for power demand : !




gSBB-based Control

aw demand is modeled as "generalized stochastically bounde
urstiness” curve

(v, 0(07)) | v > uf

A queue whose arrivals are the “raw” demands and is served a
ate y will have backlog O, such that

Pr(Q, > 7*) < ¢(y7")



gSBB-based Control
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gSBB-based Control

Objective min Tu fum C(7)dF,(T)+ By

ggt
—o(77)
C(7
. £ )_ __________ kdro 1
0.8
AY
cO® — 0.6
2 -
. 06@& A Quadratic

W delay cost - 0.4}
0.2}

No delay cost within I % o

' ‘f o < 10 15

(ITlme slot

Examples of C(z) Example of ¢(7Y7")



Selected Simulation Results

Cost benefits of demand response via abstract demand
dropping and delaying

From abstract control to real control: A case study



A Hierarchical Demand Response Framework
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A Hierarchical Demand Response Framework

How much to admit?

patial . How much to drop? } Demand modulation
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races
- Google, Facebook, MediaServer, Synthetic

eak-based pricing
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Cost Benefits

Normalized cost
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Cost Benefits
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Under peak-based pricing, our approaches provide S|gn|ﬁca

cost savings for real-world workloads w/o losing much “
demand.
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Cost Benefu’rs
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A Case Study: Media Server
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Conclusions and Open Problems

Peak power draw significantly impacts both cap-ex and op-ex

Algorithms and empirical case studies from our work on such
optimization using IT knobs

- Key idea: Abstract myriad IT knobs as dropping or delaying power
demand at the cost of performance/revenue loss

- Results for both adversarial inputs and stochastically known inputs

Plenty of scope for more work (both theoretical and empirical) ol
op-ex optimization for peak-based pricing schemes, e.g.,:
- Competitive analysis for real-time pricing using batteries for DR

- Competitive analysis for peak-based pricing using IT knobs and/or
batteries when using both "dropping” and "delaying” of power demand

More details at: http://www.cse.psu.edu/~bhuvan



ESDs in Current Datacenters

NMhy restrict ESDs to any one level of the
datacenter power hierarchy
(e.g., central or server)?

AT, g SO L

Why restrict to single ESD technology
(e.g., Lead acid battery)?




Ragone Plot
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Hybrid ESD solution may be desirable

Compressed Battery

Air Ultracapacitor/flywheel
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Multi-level Multi- Technology ESDs
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