

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Event based control: A way to reduce reconfigurations in autonomic computing ?

N. Marchand

gipsa, Control Systems Department, Grenoble, FRANCE

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-63-0) 22/03/2012 1 / 26

Outline

LCCC workshop on [Cloud Control](#page-0-0)

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

[Introduction](#page-2-0)

- **•** [Motivation](#page-2-0)
- [Outline of the talk](#page-10-0)

² [A highly nonlinear example](#page-11-0)

³ [Event-based PID controller](#page-22-0)

- **•** [Formulation](#page-22-0)
- **•** [Illustrative cases](#page-24-0)
- **•** [Simulations](#page-32-0)
- [MapReduce control](#page-36-0)

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

- [Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control
- [EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Motivation

to put control theory in computer science

- • Dealing with the dynamics: time is crucial
- Mathematical tools to "control" a system
- By "control", we mean being able to
	- define a control objective
	- define control actions accordingly
	- **guarantee** performances of the controlled system
		- **o** despite errors
		- despite perturbations
		- **▶** Facing everything that is unknown
		- ➼ Guarantee stability
	- Many other area of control theory are relevant to computer science
		- Fault tolerant control, fault detection, supervision, etc.
- Nowadays control theory is everywhere...
	- automotive, robotics, energy (grids, production, etc.), microelectronics (DVFS), etc.
- ...except maybe in computer science

 Ω

4 ロ > 4 何 > 4 ミ > 4 ミ >

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Challenging difficulties

Let's start with the hardest things

• Languages difficulties

- No physics behind algorithms, applications, services, etc.
- "Let's do things in cloud " (Sara Bouchenak from LIG-lab)

 $2Q$

 \sim \approx \sim

4 ロ ト ィ 何 ト ィ ヨ ト .

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Challenging difficulties

Let's start with the hardest things

Languages difficulties

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Challenging difficulties

Let's start with the hardest things

- Languages difficulties
- **o** Interest of both communities
	- Computer science community wants control already operative
	- **Control community don't care about computer sciences**
		- **Except in Lund!**
		- IFAC technical commitee on computer for control but none on control for computers (one on on mining..., see [IFAC website\)](http://www.ifac-control.org/about/structure/technical-committees-and-their-scopes)

No physics behind algorithms, applications, services, etc.

"Let's do things in cloud " (Sara Bouchenak from LIG-lab)

 Ω

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Challenging difficulties

Let's start with the hardest things

- Languages difficulties
- **o** Interest of both communities
	- Computer science community wants control already operative
	- Control community don't care about computer sciences
		- **Except in Lund!**
		- IFAC technical commitee on computer for control but none on control for computers (one on on mining..., see [IFAC website\)](http://www.ifac-control.org/about/structure/technical-committees-and-their-scopes)

No physics behind algorithms, applications, services, etc.

"Let's do things in cloud " (Sara Bouchenak from LIG-lab)

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

- [Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control
- [EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Challenging difficulties

Let's start with the hardest things

- Languages difficulties
- Interest of both communities
- No physics behind algorithms, applications, services, etc.
	- Building models is critical and unusual
		- How do i put the system in the control theory normal form $\frac{dx}{dt}$ x = f(x, u)?
		- **•** Frequency, poles, etc. are sometimes clear
		- Control, outputs, sensors, etc. can disappear with a system update
		- Evolution of a system can be discontinuous (robustness issue)
		- No "tiredness", only crashes
	- Model must capture main behavior BUT
		- \bullet if too precise \mathbb{IF} too complex
		- if too complex \mathbb{R} inefficient for control (unrobust)
		- Model for control is not classical modeling
	- Requires much more interaction than usual sciences

"Let's do things in cloud " (Sara Bouchenak from LIG-lab)

 Ω

4 ロ > 4 何 > 4 ミ > 4 ミ >

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Challenging difficulties

Let's start with the hardest things

- Languages difficulties
- Interest of both communities
- No physics behind algorithms, applications, services, etc.
- **•** "Let's do things in cloud **computing**" (Sara Bouchenak from LIG-lab)

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 4 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Challenging difficulties

Let's start with the hardest things

- Languages difficulties
- Interest of both communities
- No physics behind algorithms, applications, services, etc.
- "Let's do things in cloud control" (Sara Bouchenak from LIG-lab)

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Menu

• Starter: An short example of how bad computer system can be for control theory:

Admission control for PostgreSQL database server

Main dish:

- Cloud control needs to
	- react to spikes (high frequency)
	- reconfigure as less as possible (low frequency)
	- Antinomic !
- **Focus on Event-Based control**
	- **More on event based PID**
	- Short presentation of extensions
	- Assure SLA compliance in Hadoop Mapreduce
- **Q** Dessert: What need to be more efficient

Hope it will be not too indigestible !

 $\left\{ \left. \begin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

Clients

 \leftarrow \equiv

 QQ

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

 $\sqrt{ }$ \int

 \overline{a}

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

• Model gives when saturated:

 $\frac{dN}{dt} = (1 - \alpha) \cdot T_i - T_o$
 $\frac{d\alpha}{dt} = -\frac{1}{\Delta} \left[\alpha - \frac{N}{MPL} (1 - \frac{T_o}{T_i}) \right]$ $\frac{dT_o}{dt}$ = $-\frac{1}{\Delta} \left[T_o - \frac{N}{aN^2 + bN + c} \right]$

- N: number of concurrent request on the server
- *α*: abandon rate
- \bullet T_o : Throughput of served requests
- T_i : Throughput of incoming requests
- MPL: Multi Processing Level, it is the control variable
- a, b, c and Δ : parameters (ロ) (何) (ヨ) (ヨ)

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 6 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

• Model gives when saturated:

$$
\begin{cases}\n\frac{dN}{dt} = (1 - \alpha) \cdot T_i - T_o \\
\frac{d\alpha}{dt} = -\frac{1}{\Delta} \left[\alpha - \frac{N}{MPL} \left(1 - \frac{T_o}{T_i} \right) \right] \\
\frac{dT_o}{dt} = -\frac{1}{\Delta} \left[T_o - \frac{N}{aN^2 + bN + c} \right]\n\end{cases}
$$

- ✓ Quite a pretty model
	- **•** few variables/parameters
	- **e** easily identifiable
	- **o** fits well

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

• Model gives when saturated:

$$
\begin{cases}\n\frac{dN}{dt} = (1-\alpha) \cdot T_i - T_o \\
\frac{d\alpha}{dt} = -\frac{1}{\Delta} \left[\alpha - \frac{N}{MPL} (1 - \frac{T_o}{T_i}) \right] \\
\frac{dT_o}{dt} = -\frac{1}{\Delta} \left[T_o - \frac{N}{aN^2 + bN + c} \right]\n\end{cases}
$$

- ✓ Quite a pretty model
	- **•** few variables/parameters
	- **e** easily identifiable
	- **o** fits well

 \mathbb{R} is

 \leftarrow \Box \overline{A}

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

• Model gives when saturated:

$$
\begin{cases}\n\frac{dN}{dt} = (1-\alpha) \cdot T_i - T_o \\
\frac{d\alpha}{dt} = -\frac{1}{\Delta} \left[\alpha - \frac{N}{MPL} (1 - \frac{T_o}{T_i}) \right] \\
\frac{dT_o}{dt} = -\frac{1}{\Delta} \left[T_o - \frac{N}{aN^2 + bN + c} \right]\n\end{cases}
$$

- ✓ Quite a pretty model
	- **•** few variables/parameters
	- **e** easily identifiable
	- **o** fits well

 \leftarrow

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 7 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

• Model gives when saturated:

- ✓ Quite a pretty model
	- **•** few variables/parameters
	- **e** easily identifiable
	- **o** fits well

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 7 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

• Model gives when saturated:

$$
\begin{cases}\n\frac{dN}{dt} = (1-\alpha) \cdot T_i - T_o \\
\frac{d\alpha}{dt} = -\frac{1}{\Delta} \left[\alpha - \frac{N}{MPL} (1 - \frac{T_o}{T_i}) \right] \\
\frac{dT_o}{dt} = -\frac{1}{\Delta} \left[T_o - \frac{N}{aN^2 + bN + c} \right]\n\end{cases}
$$

- ✓ Quite a pretty model
	- **•** few variables/parameters
	- **e** easily identifiable
	- **o** fits well
- X Not an easy model
	- **•** Model is highly nonlinear

- Not in the standard form for control theory
- **Control is the level saturation of an** exogenous input

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

Controlled thanks nonlinear control theory (Lyapunov) • Stability is guaranteed for any value of the parameters

• No danger of miss-identification

 QQ

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

A nonlinear system example

Controlled thanks nonlinear control theory (Lyapunov) • Stability is guaranteed for any value of the parameters No danger of miss-identification

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 8 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

• Main dish:

- Cloud control needs to
	- react to spikes (high frequency)
	- reconfigure as less as possible (low frequency)

Menu

- Antinomic !
- **Focus on Event-Based control**
	- **More on event based PID**
	- Short presentation of extensions
	- Assure SLA compliance in Hadoop Mapreduce

Event-based sampling vs. periodic sampling

LCCC workshop on [Cloud Control](#page-0-0)

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

• Periodic sampling

- Sampling periodically on time
- Analogical to Riemann's integral
- Well known theory (Shannon, etc.)

- Sampling on level's
- At first glance close to Lebesgues integral
- Different extension :
	- Outside event (event-triggered)
	- **State/output dependent** sampling (self-triggered)
- **Should reduce** transmission/computation
- Few theory

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 10 / 26

 \leftarrow

 \overline{a}

 \rightarrow \rightarrow \rightarrow

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

PID controller

Classical work

- Classical PID
	- In the frequency domain:

$$
U(s) = K\left(E(s) + \frac{1}{T_i s}E(s) + T_d sE(s)\right)
$$

• Discrete time version $(h_{nom}:$ sampling period, N tunes the filter):

$$
u_p(t_k) = Ke(t_k)
$$

\n
$$
u_i(t_{k+1}) = u_i(t_k) + K_i h_{nom}e(t_k)
$$

\n
$$
u_d(t_k) = \frac{T_d}{T_d + Nh_{nom}} u_d(t_{k-1}) + \frac{KT_dN}{T_d + Nh_{nom}} (e(t_k) - e(t_{k-1}))
$$

\n
$$
u = u_p + u_i + u_d
$$

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 11 / 26

 QQ

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

PID controller

Idea: • do not update the control if y is close to y_{sp} , typically if $||e(t_a)-e(t_{a-1})|| \leq q_{nom}$

- No need to respect Shannon
- Bad behavior of the integral part
- \bullet q_{nom} linked to precision and noise

 \sim \approx \sim

 \leftarrow

-A

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0)

[Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What can happen (1/3) ?

- Simple integrator $\frac{dx}{dt} = u$
- Level-crossing sampling \Rightarrow update the control when $e(x) = 0$
- Trajectory : $x_{i+1} = x_i + (t_{i+1} t_i) \cdot u$
- \bullet Sampling instants t_i
- Sampling set: $T_{e,k,x_0} := \{t_i\} \supset \{0\}$
- -
	- closed-loop system is globally asymptotically stable
	- the solution is defined on [0,∞[
	-

•
$$
k(x) = -x^{\frac{1}{2}}
$$
, $e(x) = 0$ when $|x| = \frac{1}{k}$, $k \in \mathbb{Z}$

-
- closed-loop system is globally asymptotically stable
-

 Ω

(ロ) (何) (ヨ) (ヨ)

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0)

[Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What can happen (1/3) ?

- Simple integrator $\frac{dx}{dt} = u$
- Level-crossing sampling \Rightarrow update the control when $e(x) = 0$

• Trajectory :
$$
x_{i+1} = x_i + (t_{i+1} - t_i) \cdot u
$$

 \bullet Sampling instants t_i

• Sampling set:
$$
\mathcal{T}_{e,k,x_0} := \{t_i\} \supset \{0\}
$$

- **1** $k(x) = -x$, $e(x) = 0$ when $|x| = \exp(-\kappa)$, $\kappa \in \mathbb{Z}$
	- $T_{e,k,x_0} := \{j \cdot (1 \exp(-1)), j \in \mathbb{N}\}\$
	- closed-loop system is globally asymptotically stable
	- the solution is defined on $[0,\infty[$
	- \bullet the sampling set depends upon x_0

•
$$
k(x) = -x^{\frac{1}{2}}
$$
, $e(x) = 0$ when $|x| = \frac{1}{x}$, $x \in \mathbb{Z}$

$$
\bullet \ \ x_0 = 1 \ \Rightarrow \ t_{i+1} - t_i = \frac{1}{\sqrt{i(i+1)}}
$$

- closed-loop system is globally asymptotically stable
-

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0)

[Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What can happen (1/3) ?

- Simple integrator $\frac{dx}{dt} = u$
- Level-crossing sampling \Rightarrow update the control when $e(x) = 0$

• Trajectory :
$$
x_{i+1} = x_i + (t_{i+1} - t_i) \cdot u
$$

 \bullet Sampling instants t_i

• Sampling set:
$$
\mathcal{T}_{e,k,x_0} := \{t_i\} \supset \{0\}
$$

- **1** $k(x) = -x$, $e(x) = 0$ when $|x| = \exp(-\kappa)$, $\kappa \in \mathbb{Z}$
	- $T_{e,k,x_0} := \{j \cdot (1 \exp(-1)), j \in \mathbb{N}\}\$
	- closed-loop system is globally asymptotically stable
	- the solution is defined on $[0, \infty[$
	- the sampling set depends upon x_0

•
$$
k(x) = -x^{\frac{1}{2}}
$$
, $e(x) = 0$ when $|x| = \frac{1}{k}$, $k \in \mathbb{Z}$

- $x_0 = 1 \Rightarrow t_{i+1} t_i = \frac{1}{\sqrt{i}(i)}$ $\overline{i}(i+1)$
- closed-loop system is globally asymptotically stable
- Zeno phenomenon: the solution is defined only on [0,1.86[

 Ω

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0)

[Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What can happen (2/3) ?

9
$$
k(x) = -x
$$
, $e(x) = 0$ when $|x| = \frac{1}{\kappa}$, $\kappa \in \mathbb{Z}$
\n• $x_0 = 1 \Rightarrow t_{i+1} - t_i = \frac{1}{i+1}$

- closed-loop system is globally asymptotically stable
- $\lim_{i \to \infty} t_{i+1} t_i = 0$ when $\lim_{i \to \infty} t_i = \infty$
- Infinitely fast sampling at infinity

 \bullet $k(x) = -x^3$, $e(x) = 0$ when $|x| = \exp(-\kappa)$, $\kappa \in \mathbb{Z}$

•
$$
x_0 = 1 \Rightarrow t_{i+1} - t_i = \exp(2i) \cdot [1 - \exp(-1)]
$$

- closed-loop system is globally asymptotically stable
- lim $t_{i+1} t_i = \infty$ when lim $t_i = \infty$
-
- the solution is defined on [0,∞[
- Infinitely slow sampling at infinity

 Ω

(ロ) (何) (ヨ) (ヨ)

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0)

[Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What can happen (2/3) ?

9
$$
k(x) = -x
$$
, $e(x) = 0$ when $|x| = \frac{1}{\kappa}$, $\kappa \in \mathbb{Z}$
\n• $x_0 = 1 \Rightarrow t_{i+1} - t_i = \frac{1}{i+1}$

- closed-loop system is globally asymptotically stable
- $\lim_{i \to \infty} t_{i+1} t_i = 0$ when $\lim_{i \to \infty} t_i = \infty$
- Infinitely fast sampling at infinity

•
$$
k(x) = -x^3
$$
, $e(x) = 0$ when $|x| = \exp(-\kappa)$, $\kappa \in \mathbb{Z}$

•
$$
x_0 = 1 \Rightarrow t_{i+1} - t_i = \exp(2i) \cdot [1 - \exp(-1)]
$$

- closed-loop system is globally asymptotically stable
- $\lim_{i \to \infty} t_i = \infty$ when $\lim_{i \to \infty} t_i = \infty$
- **Shannon's condition is inconsistent**
- the solution is defined on $[0,\infty[$
- Infinitely slow sampling at infinity

 Ω

 $($ \Box \rightarrow $($ \Box \rightarrow $($ \Box \rightarrow $)$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0)

[Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What can happen (3/3) ?

\n- Unstable system:
$$
\frac{dx}{dt} = (x + u)^3
$$
\n- Solution is: $x_{i+1} = \frac{x_i + u}{\sqrt{1 - 2(t_{i+1} - t_i) \cdot (x_i + u)^2}} - u$
\n

 \bullet $k(x) = -2x$, $e(x) = 0$ when $|x| = \exp(-\kappa)$, $\kappa \in \mathbb{Z}$ and initial

•
$$
t_{i+1} - t_i = \frac{\exp(2i)}{2} \cdot \left[1 - \frac{1}{(2 - \exp(-1))^2} \right]
$$

- closed-loop system is globally asymptotically stable
- lim $t_{i+1} t_i = \infty$ when lim $t_i = \infty$
-
-

 Ω

(ロ) (何) (ヨ) (ヨ)

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0)

[Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What can happen (3/3) ?

\n- **Unstable system**:
$$
\frac{dx}{dt} = (x + u)^3
$$
\n- Solution is: $x_{i+1} = \frac{x_i + u}{\sqrt{1 - 2(t_{i+1} - t_i) \cdot (x_i + u)^2}} - u$
\n

6 $k(x) = -2x$, $e(x) = 0$ when $|x| = \exp(-\kappa)$, $\kappa \in \mathbb{Z}$ and initial condition $x_0 = 1$

•
$$
t_{i+1} - t_i = \frac{\exp(2i)}{2} \cdot \left[1 - \frac{1}{(2 - \exp(-1))^2} \right]
$$

- closed-loop system is globally asymptotically stable
- $\lim_{i \to \infty} t_i = \infty$ when $\lim_{i \to \infty} t_i = \infty$
- Shannon's condition is inconsistent
- the solution is defined on [0,∞[

 Ω

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0)

[Cases](#page-24-0)

[Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

PID controller

• We focus on the integral part

What happens one waits too long before updating the control ?

• The integral part grows because $h(t_a)$ grows:

$$
u_i(t_a) = u_i(t_{a-1}) + K_i \underbrace{h(t_a)e(t_a)}_{\text{big small}}
$$

- Strong overshoot when the control is updated (similar to saturated PID without antiwindup)
- Solution: replace the product $h \cdot e$ by a bounded function he:

$$
u_i(t_a) = u_i(t_{a-1}) + K_i \underbrace{he(t_a)}_{\text{limited}}
$$

• Saturation, Exponential forgetting factor, Hybrid, etc.

 Ω

4 ロ > 4 何 > 4 ミ > 4

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0)

[Simulations](#page-32-0)

[MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

PID controller

Simulation result

First order system:

• PID controller: $K_p = 1.83$, $T_i = 0.457$ and sampling rate 0.05s

Periodic sampling

 $2Q$

 $($ \Box \rightarrow $($ \Box \rightarrow $($ \Box \rightarrow $)$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0)

[Simulations](#page-32-0)

[MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

PID controller

Simulation result

First order system:

• PID controller: $K_p = 1.83$, $T_i = 0.457$ and sampling rate 0.05s

Evend based PID with saturated $h \cdot e$

 Ω

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0)

[Simulations](#page-32-0)

[MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

PID controller

Simulation result

First order system:

• PID controller: $K_p = 1.83$, $T_i = 0.457$ and sampling rate 0.05s

Evend based PID with exponential forgetting

 Ω

4 ロ > 4 何 > 4 ミ > 4

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0)

[Simulations](#page-32-0)

[MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

PID controller

Simulation result

First order system:

• PID controller: $K_p = 1.83$, $T_i = 0.457$ and sampling rate 0.05s

Evend based PID with hybrid $h \cdot e$

 $2Q$

4 ロ > 4 何 > 4 ミ > 4

MapReduce control *Event-based*

Simple PI controller *algorithm*

N. Marchand on a single cluster of 40 nodes. Grid5000 is a French nation-wide cluster infrastructure made up of a 5000 CPUs, wide up of a 5000 C

Introduction developed to aid parallel co[mputing research.](#page-2-0) It provides a

motivation
Motivation Outline Ω outline

NL example

EB-PID \overline{r} GB, 298GB disk space and infinite and infini

Formulation open source MapReduce impl[ementation frame](#page-22-0)work Apache Cases Simulations Hadoop v1.1.2 [7] and the hi[gh level MRBS b](#page-24-0)enchmarking Simulations. A data intensive BI

MapReduce control WapReduce
control

Conclusion **Conclusion**

N. Marchand (gipsa) $s_{\rm N}$. The channel $\left($ gipsa $\right)$

N. Marchand (gipsa) **LCCC workshop on Cloud Control** 22/03/2012 18 / 26

systems by means of event-triggered sampling algorithms. *Journal of Mathematical Control and Information*, 2013.

 \exists \rightarrow \exists \rightarrow \rightarrow \exists \rightarrow \rightarrow \in \land

N. Marchand **Time based PI feedback control.**

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0)

[MapReduce](#page-36-0) **Control**

Conclusion

Fig. 5. Control of the Based PI Control of

MapReduce control

Simple PI controller with feedforward

Time based (18 updates) vs. Event based (6 updates)
————————————————————

n. Marchand (gipsa) **Experiments - Experiments - Experiment Based Control** 22/03/2012 19 / 26 *of Mathematical Control and Information*, 2013.

 QQ

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

More food for people in control theory

- Event-based control is really recent
- Now exist :
	- Almost basic linear control where carried in an event-based framework (PID, LQR, etc.)
	- Sontag's general formula has been extended
	- A lot of strategies based on Lyapunov theory exist
	- Many practical implementations even on noisy and unstable systems
	- Early results are appearing for time-delayed systems
- Remain to clarify
	- Real number of control updates
	- All what it brings (in good and bad) is not clear
	- Frequency analysis is less convenient

 Ω

 $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R}^n \right\}$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Conclusion

• People always adopt control theory ...

- Ecological constraints: car industry (in the 90's)
- Nuclear plant: from the beginning (and one must be sure it
-
- Energy constraints: Embedded systems (in the 00's)
- Crash risks: Smart Grids (nowadays)
- In all cases it was (is) a question of money
- Is it a question of money in cloud computing?
- Before adopting control theory, intuitive control was the strategy
- Theory is the only way (control theory, game theory, queuing
	- to face safely complexity
	- to guarantee results (even in unknown/unpredictable
	- to have flexibility

 Ω

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

• People always adopt control theory ... under constraint

Conclusion

- Ecological constraints: car industry (in the 90's)
- Nuclear plant: from the beginning (and one must be sure it
-
- Energy constraints: Embedded systems (in the 00's)
- Crash risks: Smart Grids (nowadays)
- In all cases it was (is) a question of money
- Is it a question of money in cloud computing?
- Before adopting control theory, intuitive control was the strategy
- Theory is the only way (control theory, game theory, queuing
	- to face safely complexity
	- to guarantee results (even in unknown/unpredictable
	- to have flexibility

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Conclusion

- People always adopt control theory ... under constraint
	- Ecological constraints: car industry (in the 90's)
	- Nuclear plant: from the beginning (and one must be sure it works)
	- Cost constraints: Petrol industries (in late 50's)
	- Energy constraints: Embedded systems (in the 00's)
	- Crash risks: Smart Grids (nowadays)
- In all cases it was (is) a question of money
- Is it a question of money in cloud computing?
- Before adopting control theory, intuitive control was the strategy
- Theory is the only way (control theory, game theory, queuing
	- to face safely complexity
	- to guarantee results (even in unknown/unpredictable
	- to have flexibility

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Conclusion

- People always adopt control theory ... under constraint
	- Ecological constraints: car industry (in the 90's)
	- Nuclear plant: from the beginning (and one must be sure it works)
	- Cost constraints: Petrol industries (in late 50's)
	- Energy constraints: Embedded systems (in the 00's)
	- Crash risks: Smart Grids (nowadays)
- In all cases it was (is) a question of money
- Is it a question of money in cloud computing?
-
- Theory is the only way (control theory, game theory, queuing
	- to face safely complexity
	- to guarantee results (even in unknown/unpredictable
	- to have flexibility

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Conclusion

- People always adopt control theory ... under constraint
	- Ecological constraints: car industry (in the 90's)
	- Nuclear plant: from the beginning (and one must be sure it works)
	- Cost constraints: Petrol industries (in late 50's)
	- Energy constraints: Embedded systems (in the 00's)
	- Crash risks: Smart Grids (nowadays)
- In all cases it was (is) a question of money
- Is it a question of money in cloud computing?
- Before adopting control theory, intuitive control was the strategy
- Theory is the only way (control theory, game theory, queuing
	- to face safely complexity
	- to guarantee results (even in unknown/unpredictable
	- to have flexibility

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

• People always adopt control theory ... under constraint

Conclusion

- Ecological constraints: car industry (in the 90's)
- Nuclear plant: from the beginning (and one must be sure it works)
- Cost constraints: Petrol industries (in late 50's)
- Energy constraints: Embedded systems (in the 00's)
- Crash risks: Smart Grids (nowadays)
- In all cases it was (is) a question of money
- Is it a question of money in cloud computing?
- Before adopting control theory, intuitive control was the strategy
- Theory is the only way (control theory, game theory, queuing theory, etc.)
	- to face safely complexity
	- to guarantee results (even in unknown/unpredictable environment)
	- to have flexibility

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What need to be improved

- From the computer science side:
	- Classification of problems in big classes
	- Standardisation of inputs/outputs/variables for each class
	- Co-design / Control aware software
	- Better sort things by speed
	- Patience (to explain and to get results)
- From the control theory side:
	- More interest
	- Building a theory that handles computer science problems
- **•** From both side:
	- Spend more time together
	- Mix techniques from both side
- Some inspiring fields
	- Embedded systems
		- **•** deadline problems, energy optimization,
	- - centralized/decentralized,

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 22 / 26

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What need to be improved

- From the computer science side:
	- Classification of problems in big classes
	- Standardisation of inputs/outputs/variables for each class
	- Co-design / Control aware software
	- Better sort things by speed
	- Patience (to explain and to get results)
- From the control theory side:
	- More interest
	- Building a theory that handles computer science problems

• From both side:

- Spend more time together
- Mix techniques from both side
- Some inspiring fields
	- Embedded systems
		- **•** deadline problems, energy optimization,
	- - centralized/decentralized,

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 22 / 26

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What need to be improved

- From the computer science side:
	- Classification of problems in big classes
	- Standardisation of inputs/outputs/variables for each class
	- Co-design / Control aware software
	- Better sort things by speed
	- Patience (to explain and to get results)
- From the control theory side:
	- More interest
	- Building a theory that handles computer science problems
- **•** From both side:
	- Spend more time together
	- Mix techniques from both side

• Some inspiring fields

- Embedded systems
	- **•** deadline problems, energy optimization,
- - centralized/decentralized,

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 22 / 26

 $2Q$

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What need to be improved

- From the computer science side:
	- Classification of problems in big classes
	- Standardisation of inputs/outputs/variables for each class
	- Co-design / Control aware software
	- Better sort things by speed
	- Patience (to explain and to get results)
- From the control theory side:
	- More interest
	- Building a theory that handles computer science problems
- **Prom both side:**
	- Spend more time together
	- Mix techniques from both side
- Some inspiring fields
	- **•** Embedded systems
		- **o** deadline problems, energy optimization, re-allocation, heterogeneous MPSoC, ...
	- Electrical grids
		- centralized/decentralized, providers/consumers, cascading failure, heterogeneity, etc. $($ \Box \rightarrow $($ \Box \rightarrow $($ \Box \rightarrow

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 22 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What need to be improved

- From the computer science side:
	- Classification of problems in big classes
	- Standardisation of inputs/outputs/variables for each class
	- Co-design / Control aware software
	- Patience (to explain and to get results)

• From the control theory side:

-
- Building a theory that better handles computer science problems
- Adaptive methods/model free
- Large scale interconnected systems
- From both side:
	- Spend more time together
- Some inspiring fields
	- Embedded systems (deadline problems,
	- Electrical grids (centralized/decentralized,

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 23 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What need to be improved

- From the computer science side:
	- Classification of problems in big classes
	- Standardisation of inputs/outputs/variables for each class
	- Co-design / Control aware software
	- Patience (to explain and to get results)
- From the control theory side:
	- **More** interest
	- Building a theory that better handles computer science problems
	- Adaptive methods/model free
	- Large scale interconnected systems

From both side:

• Spend more time together

- Some inspiring fields
	- Embedded systems (deadline problems,
	- Electrical grids (centralized/decentralized,

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 23 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

What need to be improved

- From the computer science side:
	- Classification of problems in big classes
	- Standardisation of inputs/outputs/variables for each class
	- Co-design / Control aware software
	- Patience (to explain and to get results)
- From the control theory side:
	- **More** interest
	- Building a theory that better handles computer science problems
	- Adaptive methods/model free
	- Large scale interconnected systems
- **•** From both side:
	- Spend more time together
- Some inspiring fields
	- Embedded systems (deadline problems,
	- Electrical grids (centralized/decentralized,

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 23 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

- [Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control
- [EB-Control](#page-38-0)
- [Conclusion](#page-39-0)

What need to be improved

- From the computer science side:
	- Classification of problems in big classes
	- Standardisation of inputs/outputs/variables for each class
	- Co-design / Control aware software
	- Patience (to explain and to get results)
- From the control theory side:
	- **•** More interest
	- Building a theory that better handles computer science problems
	- Adaptive methods/model free
	- Large scale interconnected systems
- **•** From both side:
	- Spend more time together
- Some inspiring fields
	- Embedded systems (deadline problems, energy optimization, re-allocation, heterogeneous MPSoC, ...)
	- Electrical grids (centralized/decentralized, providers/consumers, cascading failure, heterogeneity, etc.)

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 23 / 26

Feedback loops become essential to handle variability

LCCC workshop on [Cloud Control](#page-0-0)

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Three nested loops are used (to dynamically manage energy on chips)

-
-
-

 Ω

4 ロ ト ィ 何 ト ィ ヨ ト .

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Feedback loops become essential to handle variability

Three nested loops are used (to dynamically manage energy on chips)

1 Control of the voltage and the frequency

 Ω

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Feedback loops become essential to handle variability

Three nested loops are used (to dynamically manage energy on chips)

- **1** Control of the voltage and the frequency
- 2 Control of the energy-performance tradeoff

 Ω

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Feedback loops become essential to handle variability

Three nested loops are used (to dynamically manage energy on chips)

- **1** Control of the voltage and the frequency
- 2 Control of the energy-performance tradeoff
- **3** Control of the applicative Quality of Service (QoS)

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 24 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Feedback loops become essential to handle variability

Three nested loops are used (to dynamically manage energy on chips)

- **1** Control of the voltage and the frequency
- 2 Control of the energy-performance tradeoff
- **3** Control of the applicative Quality of Service (QoS)

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 24 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Feedback loops become essential to handle variability

Three nested loops are used (to dynamically manage energy on chips) Also the approach used in smart grids

- **1** Control of the voltage and the frequency
- 2 Control of the energy-performance tradeoff

3 Control of the applicative Quality of Service (QoS)

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Feedback loops become essential to handle variability

Three nested loops are used (to dynamically manage energy on chips) Also the approach used in smart grids

- **1** Control of the voltage and the frequency
- 2 Control of the energy-performance tradeoff

3 Control of the applicative Quality of Service (QoS)

N. Marchand (gipsa) [LCCC workshop on Cloud Control](#page-0-0) 22/03/2012 24 / 26

N. Marchand

[Introduction](#page-2-0)

[Motivation](#page-2-0) [Outline](#page-10-0)

[NL example](#page-11-0)

[EB-PID](#page-22-0)

[Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control

[EB-Control](#page-38-0)

[Conclusion](#page-39-0)

Grenoble Workshop on Autonomic Computing and Control

- Date: 27 may 2014
- Location: Grenoble
- Organisation: Eric Rutten, INRIA and Stéphane Mocanu, Gipsa-lab
- Confirmed speakers:
	- Karl-Erik ARZEN (Lund, Sweden)
	- Alberto LEVA (Milano, Italy)
	- Ada DIACONESCU (Telecom Paris-Tech, France)
	- Suzanne LESECQ (CEA LETI)
	- Didier DONSEZ (LIG)
	- Bogdan ROBU (GIPSA)
	- Eric RUTTEN (INRIA)

 $2Q$

LCCC workshop on [Cloud Control](#page-0-0) N. Marchand [Introduction](#page-2-0) [Motivation](#page-2-0) [Outline](#page-10-0) [NL example](#page-11-0) [EB-PID](#page-22-0) [Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0)

35th International Summer School of Automatic Control

- Date: September, 8-12, 2014
- Location: Grenoble
- Focus: Modern Tools for Nonlinear Contral
- **Confirmed lecturers:**
	- **Q** Didier HENRION
	- **Andrew TFFL**
	- Laurent PRALY
	- Mirko FIACCHINI
	- **Juca ZACCARIAN**

[MapReduce](#page-36-0) control [EB-Control](#page-38-0) [Conclusion](#page-39-0)

 Ω

35th International Summer School of Automatic Control

- **LCCC** workshop on [Cloud Control](#page-0-0)
- N. Marchand
- [Introduction](#page-2-0)
- [Motivation](#page-2-0) [Outline](#page-10-0)
- [NL example](#page-11-0)
- [EB-PID](#page-22-0)
- [Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control
- [EB-Control](#page-38-0)
- [Conclusion](#page-39-0)
- Date: September, 8-12, 2014
- Location: Grenoble
- Focus: Modern Tools for Nonlinear Contral

35th International Summer School of Automatic Control

- **LCCC** workshop on [Cloud Control](#page-0-0)
- N. Marchand
- [Introduction](#page-2-0)
- [Motivation](#page-2-0) [Outline](#page-10-0)
- [NL example](#page-11-0)
- [EB-PID](#page-22-0)
- [Formulation](#page-22-0) [Cases](#page-24-0) [Simulations](#page-32-0) [MapReduce](#page-36-0) control
- [EB-Control](#page-38-0)
- [Conclusion](#page-39-0)
- Date: September, 8-12, 2014
- **·** Location: Grenoble
- Focus: Modern Tools for Nonlinear Contral

 Ω