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Motivation
to put control theory in computer science

Dealing with the dynamics: time is crucial
Mathematical tools to "control" a system
By "control", we mean being able to

define a control objective
define control actions accordingly
guarantee performances of the controlled system

despite errors
despite perturbations

ü Facing everything that is unknown
ü Guarantee stability

Many other area of control theory are relevant to computer
science

Fault tolerant control, fault detection, supervision, etc.

Nowadays control theory is everywhere...
automotive, robotics, energy (grids, production, etc.),
microelectronics (DVFS), etc.

...except maybe in computer science
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Challenging difficulties
Let’s start with the hardest things

Languages difficulties

Words Computer science Control theory
Autonomic or Au-
tonomous

Controlled Uncontrolled

Time response Queuing + process-
ing time

time needed to reach
x% of the final value

Parameter variables you can
change

constants

Cloud Set of intercon-
nected computers

Look at Lund’s sky

Control Parametrization dx
dt = f (x ,u)

. . . . . . . . .

Interest of both communities
No physics behind algorithms, applications, services, etc.
"Let’s do things in cloud " (Sara Bouchenak from LIG-lab)
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Challenging difficulties
Let’s start with the hardest things

Languages difficulties
Interest of both communities

Computer science community wants control already operative
Control community don’t care about computer sciences

Except in Lund !
IFAC technical commitee on computer for control but none on
control for computers (one on on mining..., see IFAC website)

No physics behind algorithms, applications, services, etc.
"Let’s do things in cloud " (Sara Bouchenak from LIG-lab)
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Challenging difficulties
Let’s start with the hardest things

Languages difficulties
Interest of both communities
No physics behind algorithms, applications, services, etc.

Building models is critical and unusual
How do i put the system in the control theory normal form
dx
dt x = f (x ,u) ?
Frequency, poles, etc. are sometimes clear
Control, outputs, sensors, etc. can disappear with a system
update
Evolution of a system can be discontinuous (robustness issue)
No "tiredness", only crashes

Model must capture main behavior BUT
if too preciseR too complex
if too complexR inefficient for control (unrobust)
Model for control is not classical modeling

Requires much more interaction than usual sciences

"Let’s do things in cloud " (Sara Bouchenak from LIG-lab)
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Menu

Starter: An short example of how bad computer system can be
for control theory:

Admission control for PostgreSQL database server

Main dish:
Cloud control needs to

react to spikes (high frequency)
reconfigure as less as possible (low frequency)

L Antinomic !
Focus on Event-Based control

More on event based PID
Short presentation of extensions
Assure SLA compliance in Hadoop Mapreduce

Dessert: What need to be more efficient

Hope it will be not too indigestible !
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A nonlinear system example

Admission

Service

Admission control Proxy

Clients

Control

M
on

ito
r

Reject
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A nonlinear system example

Admission

Service

Admission control Proxy

Clients

Control

M
on

ito
r

Reject

Model gives when saturated:
dN
dt = (1−α) ·Ti −To
dα
dt = − 1

∆

[
α− N

MPL (1− To
Ti

)
]

dTo
dt = − 1

∆

[
To − N

aN2+bN+c
]

N: number of concurrent request
on the server

α: abandon rate

To : Throughput of served requests

Ti : Throughput of incoming
requests

MPL: Multi Processing Level, it is
the control variable

a, b, c and ∆: parameters
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A nonlinear system example

Model gives when saturated:
dN
dt = (1−α) ·Ti −To
dα
dt = − 1

∆

[
α− N

MPL (1− To
Ti

)
]

dTo
dt = − 1

∆

[
To − N

aN2+bN+c
]

3 Quite a pretty model
few variables/parameters
easily identifiable
fits well
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A nonlinear system example

Model gives when saturated:
dN
dt = (1−α) ·Ti −To
dα
dt = − 1

∆

[
α− N

MPL (1− To
Ti

)
]

dTo
dt = − 1

∆

[
To − N

aN2+bN+c
]

3 Quite a pretty model
few variables/parameters
easily identifiable
fits well

7 Not an easy model
Model is highly nonlinear
Not in the standard form for control
theory
Control is the level saturation of an
exogenous input
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A nonlinear system example

Controlled thanks nonlinear control theory (Lyapunov)
Stability is guaranteed for any value of the parameters

No danger of miss-identification
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Menu

Starter: An short example of how bad computer system can be
for control theory:

Admission control for PostgreSQL database server

Main dish:
Cloud control needs to

react to spikes (high frequency)
reconfigure as less as possible (low frequency)

L Antinomic !
Focus on Event-Based control

More on event based PID
Short presentation of extensions
Assure SLA compliance in Hadoop Mapreduce

Dessert: What need to be more efficient

Hope it will be not too indigestible !
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Event-based sampling vs. periodic sampling

Periodic sampling
Sampling periodically on time
Analogical to Riemann’s
integral
Well known theory (Shannon,
etc.)

Event-based sampling
Sampling on level’s
At first glance close to
Lebesgues integral
Different extension :

Outside event
(event-triggered)
State/output dependent
sampling (self-triggered)

Should reduce
transmission/computation
Few theory

N. Marchand (gipsa) LCCC workshop on Cloud Control 22/03/2012 10 / 26
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PID controller
Classical work

PID PLANT
ye uysp

Classical PID
In the frequency domain:

U(s)=K

(
E(s)+ 1

Ti s
E(s)+Td sE(s)

)
Discrete time version (hnom: sampling period, N tunes the
filter):

up(tk ) = Ke(tk )

ui (tk+1) = ui (tk )+Kihnome(tk )

ud (tk ) = Td

Td +Nhnom
ud (tk−1)+

KTdN

Td +Nhnom

(
e(tk )−e(tk−1)

)
u = up +ui +ud

N. Marchand (gipsa) LCCC workshop on Cloud Control 22/03/2012 11 / 26
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PID controller

PID PLANT
y

e

uysp

Sampling

Idea:
do not update the control if y is close to ysp , typically if∣∣∣∣e(ta)−e(ta−1)

∣∣∣∣≤ qnom

No need to respect Shannon
Bad behavior of the integral part
qnom linked to precision and noise

N. Marchand (gipsa) LCCC workshop on Cloud Control 22/03/2012 12 / 26
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What can happen (1/3) ?

Simple integrator dx
dt = u

Level-crossing sampling ⇒ update the control when e(x)= 0
Trajectory : xi+1 = xi + (ti+1− ti ) ·u
Sampling instants ti
Sampling set: Te,k ,x0 := {ti } ⊃ {0}

1 k(x)=−x , e(x)= 0 when |x | = exp(−κ), κ ∈Z
Te,k ,x0 :=

{
j · (1−exp(−1)), j ∈N}

closed-loop system is globally asymptotically stable
the solution is defined on [0,∞[
the sampling set depends upon x0

2 k(x)=−x 1
2 , e(x)= 0 when |x | = 1

κ , κ ∈Z
x0 = 1 ⇒ ti+1− ti = 1p

i(i+1)
closed-loop system is globally asymptotically stable
Zeno phenomenon: the solution is defined only on [0,1.86[

N. Marchand (gipsa) LCCC workshop on Cloud Control 22/03/2012 13 / 26
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What can happen (2/3) ?
3 k(x)=−x , e(x)= 0 when |x | = 1

κ , κ ∈Z
x0 = 1 ⇒ ti+1− ti = 1

i+1
closed-loop system is globally asymptotically stable
limti+1− ti = 0 when limti =∞
Infinitely fast sampling at infinity

4 k(x)=−x3, e(x)= 0 when |x | = exp(−κ), κ ∈Z
x0 = 1 ⇒ ti+1− ti = exp(2i) · [1−exp(−1)]
closed-loop system is globally asymptotically stable
limti+1− ti =∞ when limti =∞
Shannon’s condition is inconsistent
the solution is defined on [0,∞[
Infinitely slow sampling at infinity

N. Marchand (gipsa) LCCC workshop on Cloud Control 22/03/2012 14 / 26
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What can happen (3/3) ?

Unstable system: dx
dt = (x +u)3

Solution is: xi+1 = xi+up
1−2(ti+1−ti )·(xi+u)2

−u

5 k(x)=−2x , e(x)= 0 when |x | = exp(−κ), κ ∈Z and initial
condition x0 = 1

ti+1− ti = exp(2i)
2 ·

[
1− 1

(2−exp(−1))2
]

closed-loop system is globally asymptotically stable
limti+1− ti =∞ when limti =∞
Shannon’s condition is inconsistent
the solution is defined on [0,∞[

N. Marchand (gipsa) LCCC workshop on Cloud Control 22/03/2012 15 / 26
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PID controller

We focus on the integral part
What happens one waits too long before updating the control ?
The integral part grows because h(ta) grows:

ui (ta)= ui (ta−1)+Kih(ta)︸ ︷︷ ︸
big

e(ta)︸ ︷︷ ︸
small

Strong overshoot when the control is updated (similar to
saturated PID without antiwindup)

Solution: replace the product h ·e by a bounded function he:

ui (ta)= ui (ta−1)+Kihe(ta)︸ ︷︷ ︸
limited

Saturation, Exponential forgetting factor, Hybrid, etc.

N. Marchand (gipsa) LCCC workshop on Cloud Control 22/03/2012 16 / 26
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PID controller
Simulation result

First order system:

H(s)= G

1+τ · s where G = 1 and τ= 1

PID controller: Kp = 1.83, Ti = 0.457 and sampling rate 0.05s

Periodic sampling

0 2 4 6 8 10 12 14 16 18 20
0

0.05

time [s]

h(
t)

 [s
]

Sampling intervals (time-based control)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

time [s]

P
os
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 [m
]

Setpoint and measured signal

 

 

setpoint
time−based control

First order system −− Time−triggered PI control 400 samples
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both numerator and denominator in (11)). Note also that,
whereas the feedback controller ZPI is not required in the
ideal case (without model uncertainties), it is interesting to
keep it to ensure robustness of the closed-loop system (this
is discussed in the sequel).

On the other hand, an event is enforced when the relative
disturbance crosses a given detection level d̄, this defines the
event function as

εff (t) := d̄−
∣∣d(t)− d(tj)

∣∣ (12)

where tj is the last sampling instant time.
3) Remarks on the use of both event-based feedback and

feedforward controllers: First note that both strategies are
independent in the sense that, when an event occurs in the
feedback part, nevertheless the feedforward control law is
not computed and updated (and inversely). for this reason, a
different notation tk and tj was used to differentiate feedback
and feedforward’s event instants.

Also, the detection levels ē and d̄ are related and have
hence to be selected carefully. Indeed, ...

III. EXPERIMENTAL RESULTS (MIHALY)

A. Experimental setup

All the experiments are conducted online, in Grid5000,
on a single cluster of 40 nodes. Grid5000 is a French
nation-wide cluster infrastructure made up of a 5000 CPUs,
developed to aid parallel computing research. It provides a
scientific tool for running large scale distributed experiments,
see [3]. Each node from the cluster used for the test has a
quad-core Intel CPU of 2.53GHz, an internal RAM memory
of 15GB, 298GB disk space and infiniband network. The
open source MapReduce implementation framework Apache
Hadoop v1.1.2 [7] and the high level MRBS benchmarking
suite are used for the experiments. A data intensive BI
workload is selected as the workload. The BI benchmark con-
sists of a decision support system for a wholesale supplier.
Each client interaction emulates a typical business oriented
query run over a large amount of data (10GB here). To
generate the client interactions Apache Hive is deployed on
top of Hadoop. This converts SQL like queries to a series of
MapReduce jobs. All the nodes in the cluster were on the
same switch to minimize network skews.

The control is implemented in Matlab and all the measure-
ments are made online in real time. The service time1 and the
number of clients are measured from the cluster. The number
of nodes in the cluster is used to ensure the service time
deadlines, regardless the changes in the number of clients.
All the actuators and sensors are implemented in Linux Bash
scripts. The choice for Matlab as the control environment is
motivated by the fact that it provides significant tools for
the fast implementation and testing of different controller
architectures.

1By service time we mean the time it takes for a client interaction to
execute. In computer science this is also known as response time. We did
not use this term since in the control theory community ”response time”
means something completely different.

B. Event based PI

C. Event based PI control - Minimizing the number of
actuations

The field of control in Big Data cloud environments
brings us specific control constraints. Namely the adding
and removing of resources takes considerable time and has
energetic and monetary cost. We therefore want to avoid as
much as possible such quick changes in the control signal.
One approach to minimize the number of actuations can be
found in the event-based control theory.

For the case of controlling cloud resources we see the main
advantage of using event based controllers in minimizing
the number of actuations. This minimization can be done
using the extra tuning parameter introduced by the event
based controller namely the error threshold limit elim. This
value can be used to minimize the actuation count while still
retaining acceptable performance. The PI control architecture
using the event-based approach can be seen in Figure 3.

ZMR

yr(k) upi(k)e(k) y(k)+

PI controller MapReduce System

Service time#nodes

y(k)

Reference
service time

ZPI
-

Event-based
algorithm

Fig. 3. Event-based PI feedback Control Architecture

The results of implementing the Event Based PI controller
on the same system as previously described are given in
Figure 7.
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Fig. 4. Closed loop experiments - Event Based PI Control

We see that the event based PI controller also manages to
keep the service time below the threshold in the presence of
perturbation as the classical PI controller. One can also see
that, when comparing Figure ?? with Figure 7, the control
to be applied is computed only several times and the number
of switches in the nodes number is therefore drastically
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diminished as well. We have reduced by half the changes
in system nodes (4 changes with the event based controller
compared to 8 without). Although the performance is just a
bit worse its benefits are that it brings less energetic cost for
the cloud provider and less monetary cost for the user.
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diminished as well. We have reduced by half the changes
in system nodes (4 changes with the event based controller
compared to 8 without). Although the performance is just a
bit worse its benefits are that it brings less energetic cost for
the cloud provider and less monetary cost for the user.
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diminished as well. We have reduced by half the changes
in system nodes (4 changes with the event based controller
compared to 8 without). Although the performance is just a
bit worse its benefits are that it brings less energetic cost for
the cloud provider and less monetary cost for the user.
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Crash risks: Smart Grids (nowadays)

In all cases it was (is) a question of money
Is it a question of money in cloud computing ?
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environment)
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In all cases it was (is) a question of money
Is it a question of money in cloud computing ?
Before adopting control theory, intuitive control was the strategy
Theory is the only way (control theory, game theory, queuing
theory, etc.)

to face safely complexity
to guarantee results (even in unknown/unpredictable
environment)
to have flexibility
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What need to be improved

From the computer science side:
Classification of problems in big classes
Standardisation of inputs/outputs/variables for each class
Co-design / Control aware software
Better sort things by speed
Patience (to explain and to get results)

From the control theory side:
More interest
Building a theory that handles computer science problems

From both side:
Spend more time together
Mix techniques from both side

Some inspiring fields
Embedded systems

deadline problems, energy optimization,
re-allocation, heterogeneous MPSoC, ...

Electrical grids
centralized/decentralized,
providers/consumers, cascading failure,
heterogeneity, etc.
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Feedback loops become essential to handle
variability

Three nested loops are used (to dynamically manage energy on chips)

Also the approach used in smart grids

1 Control of the voltage and the frequency
2 Control of the energy-performance tradeoff
3 Control of the applicative Quality of Service (QoS)

fclk

Computational
Nodes

Vdd
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Grenoble Workshop on
Autonomic Computing and Control

Date: 27 may 2014
Location: Grenoble
Organisation: Eric Rutten, INRIA and Stéphane Mocanu, Gipsa-lab

Confirmed speakers:
Karl-Erik ARZEN (Lund, Sweden)
Alberto LEVA (Milano, Italy)
Ada DIACONESCU (Telecom Paris-Tech, France)
Suzanne LESECQ (CEA LETI)
Didier DONSEZ (LIG)
Bogdan ROBU (GIPSA)
Eric RUTTEN (INRIA)
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35th International Summer School of Automatic
Control

Date: September, 8-12, 2014
Location: Grenoble
Focus: Modern Tools for Nonlinear Contral
Confirmed lecturers:

Didier HENRION
Andrew TEEL
Laurent PRALY
Mirko FIACCHINI
Luca ZACCARIAN
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