

RT-Xen: Real-Time Virtualization for the Cloud

Chenyang Lu

Cyber-Physical Systems Laboratory
Department of Computer Science and Engineering

Real-Time Virtualization

- Cars are becoming real-time mini-clouds!
 - \square Consolidate 100 ECUs \rightarrow 10 multicore processors.
 - \square Integrate multiple vendors' systems \rightarrow common platforms.
 - □ Must preserve real-time guarantees on a virtualized platform!
- ➤ Internet of Things → Cyber-Physical Systems
 - □ Smart manufacturing, smart transportation, smart grid.
 - \square Internet-scale sensing and control \rightarrow real-time cloud computing.
- Cloud gaming
 - □ Xbox One: cloud offloading computation of environmental elements
 - □ Sony acquired Gaikai, an open cloud gaming platform.

Virtualization is *not* real-time today

- Existing hypervisors provide no guarantee on latency
 - Xen: credit scheduler, [credit, cap]
 - VMware ESXi: [reservation, share, limitation]
 - Microsoft Hyper-V: [reserve, weight, limit]
- > Public clouds lack service level agreement on latency
 - □ EC2, Compute Engine, Azure: #VCPUs

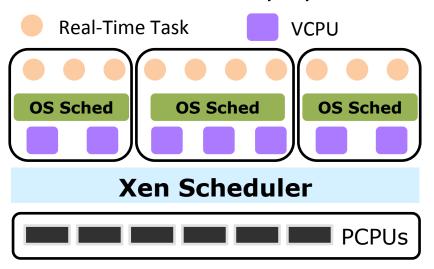
Current platforms provision CPU resources, not real-time performance!

Challenges

- > Support real-time applications in a virtualized environment.
 - □ Latency guarantees to tasks running in virtual machines (VMs).
 - □ Real-time performance isolation between VMs.
- > Real-time performance provisioning at different levels
 - Virtualization within a host
 - Communication and I/O
 - □ Cloud resource management

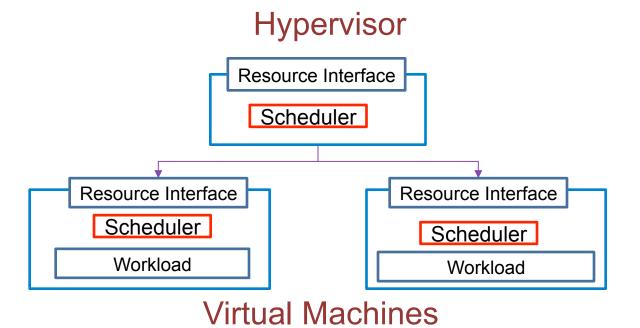
RT-Xen

- Real-time hypervisor based on Xen
 - Real-time VM scheduling
 - Real-time communication
- Build on compositional scheduling theory
 - VMs specify resource interfaces
 - □ Real-time guarantees to tasks in VMs
- Open source
 - ☐ Xen patch in progress



RT-OpenStack: cloud management based on RT-Xen

Xen Virtualization Architecture

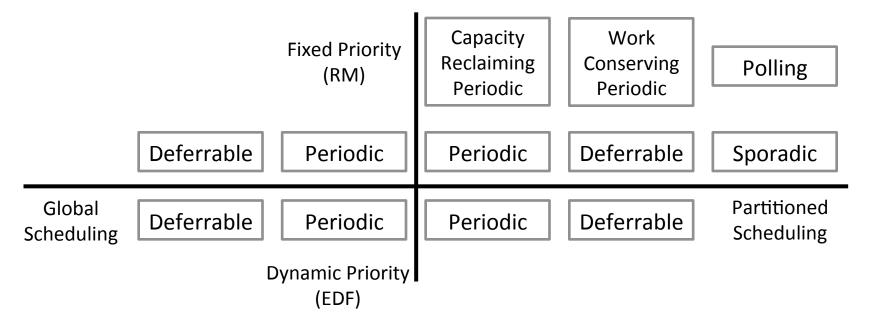

- > Xen: type-I, baremetal hypervisor
 - □ Domain-0: drivers, tool stack to control VMs.
 - ☐ Guest Domain: para-virtualized or fully virtualized OS.
- Xen scheduler
 - ☐ Guest OS runs on VCPUs.
 - Xen schedules VCPUs on PCPUs.
 - Credit scheduler: round-robin with proportional share.

Compositional Scheduling

- > Analytical real-time guarantees to tasks running in VMs.
- VM resource interfaces
 - ☐ Hides task-specific information
 - Multicore: <period, budget, #VCPU>
 - □ Computed based on compositional scheduling analysis

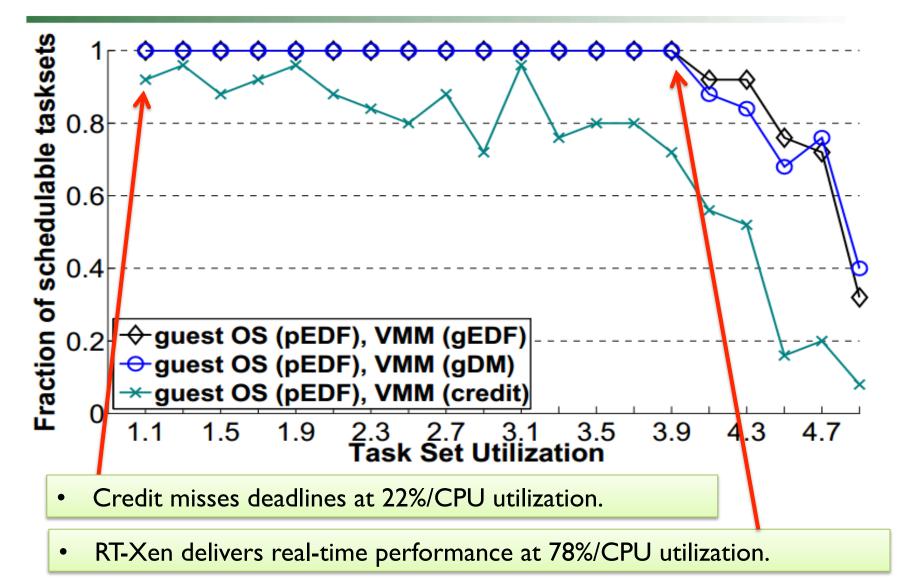
Real-Time Scheduling Policies

- Priority schemes
 - ☐ Static priority: Rate Monotonic
 - Dynamic priority: Earliest Deadline First (EDF)
- Multi-core
 - ☐ Global scheduling: allow VCPU migration across cores
 - □ Partitioned scheduling: bound VCPUs to cores


Scheduling VM as "Server"

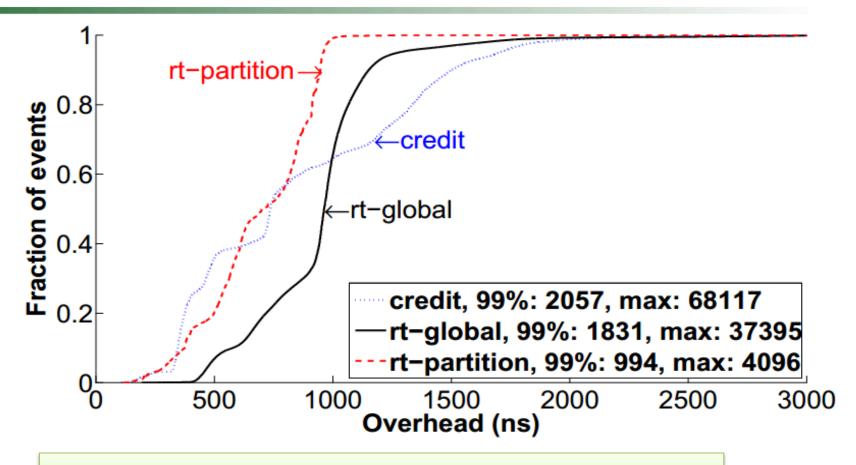
RT-Xen: Real-Time Scheduling in Xen

- Single-core
 RT-Xen 1.0
- Single-core enhanced RT-Xen I.I
- Multi-core scheduling RT-Xen 2.0
 - RT-global
 - □ RT-partition

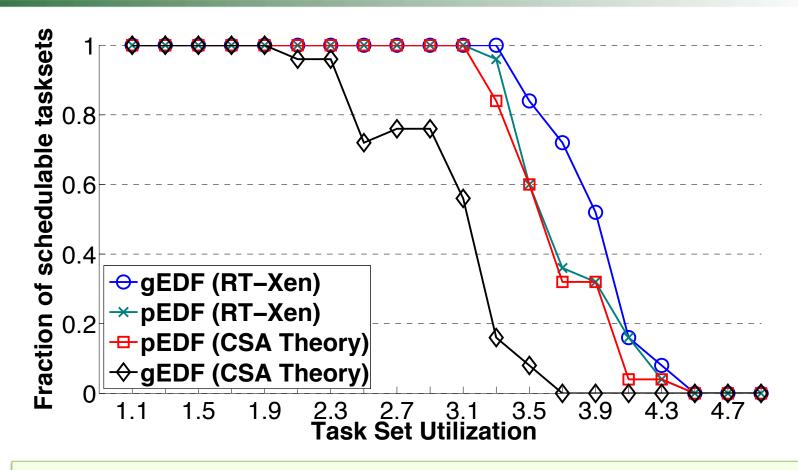

10

Experimental Setup

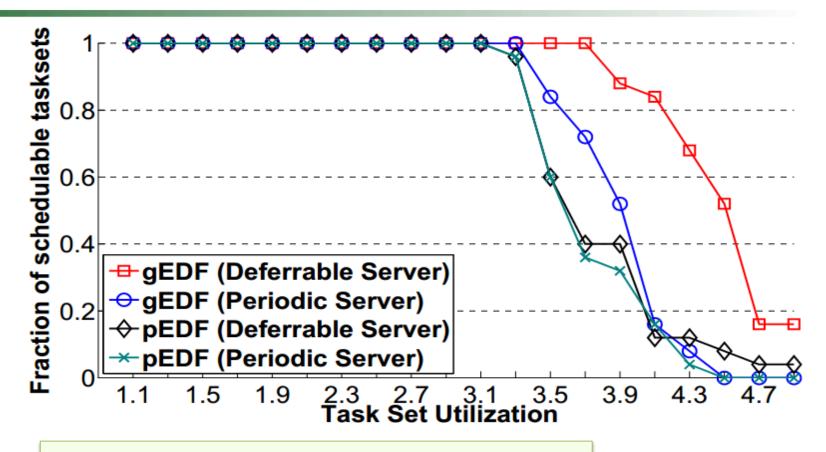
- > Hardware: Intel i7 processor, 6 cores, 3.33 GHz
 - □ Allocate I VCPU for Domain-0, pinned to PCPU 0
 - □ All guest VMs use the remaining cores
- Software
 - Xen 4.3 patched with RT-Xen
 - ☐ Guest OS: Linux patched with LITMUS
- Workload
 - □ Period tasks: synthetic, ARINC 653 avionics workload (RT-Xen 1.1)
 - \square Allocate tasks \rightarrow VMs



RT-Xen 2.0: Credit Scheduler

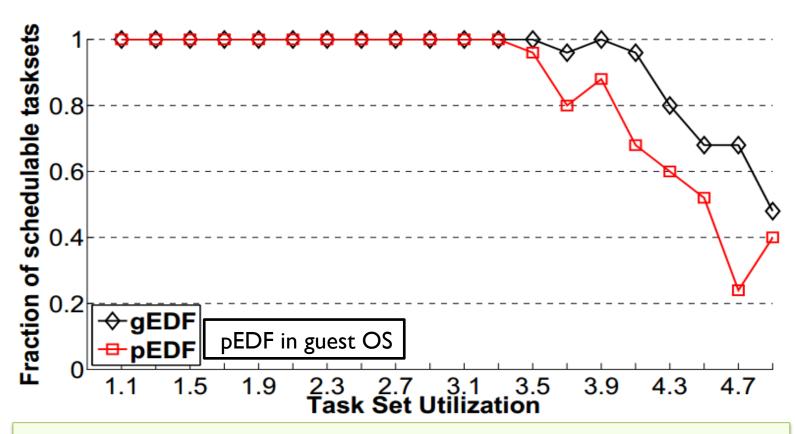

RT-Xen 2.0: Scheduling Overhead

- rt-global has extra overhead due to global lock.
- Credit has poor max overhead due to load balancing.


RT-Xen 2.0: Theory vs. Experiments

- gEDF > pEDF empirically, thanks to work-conserving global scheduling.
- gEDF < pEDF theoretically due to pessimistic analysis.

RT-Xen 2.0: Deferrable vs. Periodic



Work-conserving wins empirically!

- Deferable Server (DS) > Periodic Server.
- gEDF+DS → best real-time performance.

RT-Xen 2.0: How about Cache?

- gEDF > pEDF for cache intensive workload.
- Benefit of global scheduling dominates migration cost.
- Shared cache mitigates cache penalty due to migration.

Conclusion

- > Diverse applications demand real-time virtualization and cloud.
 - Embedded real-time systems
 - Internet-scale cyber-physical systems
 - Latency-sensitive cloud applications
- > RT-Xen provides real-time performance and guarantees
 - □ Efficient implementation of diverse real-time scheduling policies.
 - \square Leverage compositional scheduling theory \rightarrow analytical guarantee.
 - \square Resource interface \rightarrow systematic resource allocation for latency bounds.
- On-going
 - □ Working on RT-Xen patch for Xen core distribution.
 - □ RT-OpenStack: integration with OpenStack on the way.

https://sites.google.com/site/realtimexen/

- RT-Xen I.0: S. Xi, J. Wilson, C. Lu, and C.D. Gill, <u>RT-Xen: Towards Real-Time Hypervisor Scheduling in Xen</u>, ACM International Conferences on Embedded Software (EMSOFT), 2011.
- **RT-Xen I.I:** J. Lee, S. Xi, S. Chen, L.T.X. Phan, C. Gill, I. Lee, C. Lu and O. Sokolsky <u>Realizing Compositional Scheduling through Virtualization</u>, IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2012
- RT-Xen 2.0: S. Xi, C. Lu, C. Gill, M. Xu, L.T.X. Phan, I. Lee, and O. Sokolsky, <u>Real-Time Multi-Core Virtual Machine Scheduling in Xen</u>, Washington University Technical Report, WUCSE-2013-109 2013
- inter-domain communication: S. Xi, C. Li, C. Lu, and C. Gill, <u>Prioritizing Local Inter-Domain Communication in Xen</u>, ACM/IEEE International Symposium on Quality of Service (IWQoS), 2013.