

SOME THOUGHTS

Johan Eker Principal Researcher

Ericsson

ERICSSON, WHO?

OPERATOR CLOUD SEGMENTS 5

Operator Public Cloud

Virtualized Compute + WAN resources sold as a service to Enterprises aka "Managed Cloud"

Operator IT Private Cloud

Virtualized IT functions (OSS, BSS, SDP, ERP, CRM etc)

Operator Telecom Private Cloud

Virtualized telecom functions (e.g. IMS)

NFV

Network Functions Virtualization

Classical Network Appliance Approach

- Fragmented non-commodity hardware.
- · Physical install per appliance per site.
- Hardware development large barrier to entry for new vendors, constraining innovation & competition.

Independent Software Vendors Virtual Virtual Virtual Orchestrated, automatic & remote install. Standard High Volume Servers Standard High Volume Storage Standard High Volume **Ethernet Switches Network Virtualisation**

Approach

Figure 1: Vision for Network Functions Virtualisation

Radio Access Network Nodes

Doing what?

Collecting data. Acting on data.

DATA.

Source. Observer. Student.

DATA FROM HUMANS

Photos. Videos. Text. Audio.

DATA FROM HUMANS

Google. FB. Enterprise File & Mail.

DATA FROM MACHINES

Servers, Phones, Wearables, Sensors, Cars.

DATA FROM NATURE

Is the highest resolution data available.

10,000,000 GENOMES IS 20EB

Keep all the data

STORAGE INDUSTRY SHIPPED 16EB

In 2012 (according to IDC)

A SINGLE IDEA CAN CONSUME AN ENTIRE INDUSTRY

WHAT WE'VE BEEN DOING

Humans Source, Humans Observe, Humans Learn Nature Source, Nature Observe, Nature Learns Nature Source, Humans Observe, Humans Learn Nature Source, Machine Observes, Humans Learn

WHAT'S NEW

Humans Source, Machines Observe, Humans Learn Humans Source, Machines Observe, Machines Learn Machines Source, Machines Observe, Machines Learn Nature Source, Machines Observe, Machines Learn

Collecting Data.

Learning.

Acting.

MISSION CRITICAL CLOUD

Timing

High availability

THIS IS THE HARDWARE

Distributed. Heterogenous. Dynamic.

HOW TO PROGRAM?

HOW TO PROGRAM?

Ease of use. Resource. Timing. Resilient.

HOW TO MANAGE?

Distributed. Network, Computed & Data integration

AN APPLICATION AS A GRAPH

- Nodes called actors
- Message passing
 - Actors only interact via ports & FIFO connections
- Scheduling decoupled from algorithm
- Programming in CAL, Erlang or X

CALTOOPIA.ORG

The CAL Actor Language

THE END

Everything is programmable

The data collected is used to control things

The cloud is integrated with devices & network