
Principles and Methods for

Elastic Computing -
Lund, 7 May 2014

Schahram Dustdar

Distributed Systems Group

 TU Vienna

http://dsg.tuwien.ac.at/research/viecom/

Acknowledgements

NOTE: The content includes some ongoing work

Includes some joint work with Hong-Linh Truong, Alessio Gambi, Muhammad

Z.C. Candra, Georgiana Copil, Duc-Hung Le, Daniel Moldovan, Stefan Nastic,

Mirela Riveri, Sanjin Sehic, Ognjen Scekic

eHealth &

Smart Health

networks
Game Machine

Telephone

PC

DVD

Audio

TV

STB DVC

Smart

Homes

Smart eGovernments &

eAdministrations Smart Energy

Networks

Smart Evolution – People, Services,Things

Elastic Systems

Smart Transport

Networks

Computing Models

Machine-based

Computing

Human-based

Computing

Things-based

computing

Grid

P
ro

c
e
s
s
in

g

U
n
it

A
rc

h
it
e
c
tu

re

C
o
m

m
.

SMP

S. Dustdar, H. Truong, “Virtualizing Software and Humans

for Elastic Processes in Multiple Clouds – a Service

Management Perspective”, in International Journal of Next

Generation Computing, 2012

Ad hoc networks Web of things

Think Ecosystems:

People, Services, Things

Diverse users with
complex networked
dependencies and
intrinsic adaptive
behavior – has:

1. Robustness

mechanisms:
achieving stability in
the presence of
disruption

2. Measures of health:
diversity, population
trends, other key
indicators

Our Approach

 Unified service unit model (Consumption, ownership,

provisioning, price, function, etc.)

 Connecting Data Centers to IoT

 From physically isolated verticals to virtual verticals

 Software-defined elastic data centers and IoT ecosystems

 SD units are described with well-defined API

 Provisioning units for customized gateways

 Dynamically composing units into runtime topologies

 Runtime controlling and optimization via configuration policies

(DevOps principle)

 Human Augmentation

 Human computation capabilities under elastic service units

 Programming human-based units together with software-based

units

Elasticity ≠ Scaleability

Resource elasticity
Software / human-based

computing elements,

multiple clouds

Quality elasticity
Non-functional parameters e.g.,

performance, quality of data,

service availability, human

trust

Costs & Benefit

elasticity
rewards, incentives

Elasticity

 Multi-dimensional

Elasticity

 Service computing

models

 Cloud provisioning

models

Schahram Dustdar, Hong Linh Truong:

Virtualizing Software and Humans for Elastic

Processes in Multiple Clouds- a Service

Management Perspective. IJNGC 3(2) (2012)

Vienna Elastic Computing Model
dsg.tuwien.ac.at/research/viecom

Diverse types of elasticity requirements

 Application user: “If the cost is greater than 800 Euro, there should be

a scale-in action for keeping costs in acceptable limits”

 Software provider: “Response time should be less than amount X

varying with the number of users.”

 Developer: “The result from the data analytics algorithm must reach a

certain data accuracy under a cost constraint. I don’t care about how

many resources should be used for executing this code.”

 Cloud provider: “When availability is higher than 99% for a period of

time, and the cost is the same as for availability 80%, the cost should

increase with 10%.”

Data Center - Engineering Techniques

High Level Description of Elasticity

Requirements
SYBL (Simple Yet Beautiful

Language) for specifying

elasticity requirements

SYBL-supported requirement

levels

1. Cloud Service Level

2. Service Topology Level

3. Service Unit Level

4. Relationship Level

5. Programming/Code Level

#SYBL.CloudServiceLevel

Cons1: CONSTRAINT responseTime < 5 ms

Cons2: CONSTRAINT responseTime < 10 ms

WHEN nbOfUsers > 10000

Str1: STRATEGY CASE fulfilled(Cons1) OR

fulfilled(Cons2): minimize(cost)

#SYBL.ServiceUnitLevel

Str2: STRATEGY CASE ioCost < 3 Euro :

maximize(dataFreshness)

#SYBL.CodeRegionLevel

Cons4: CONSTRAINT dataAccuracy>90%

AND cost<4 Euro

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for Controlling

Elasticity in Cloud Applications", 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),

May 14-16, 2013, Delft, Netherlands

Mapping Services Structures to

Elasticity Metrics

Elasticity Model for Cloud Services
Moldovan D., G. Copil, Truong H.-L., Dustdar S. (2013). MELA:

Monitoring and Analyzing Elasticity of Cloud Service. CloudCom

2013

Elasticity space functions: to determine if a

service unit/service has the intended

“elasticity behavior”

Elasticity Pathway functions: to characterize the elasticity

behavior from a general/particular view

Elasticity Space

Multi-Level Elasticity Space
Service requirement

COST<= 0.0034$/client/h

2.5$ monthly subscription for each

service client (sensor)

Elasticity Space “Clients/h” Dimension

Elasticity Space “Response Time” Dimension

 Determined Elasticity Space Boundaries

 Clients/h > 148

 300ms ≤ ResponseTime ≤ 1100 ms

IoT- Engineering Techniques

Smart City Dubai

Pacific Controls

Command Control Center

HVAC (Heating, Ventilation, Air Conditioning) Ecosystem

Water Ecosystem

Air Ecosystem

Monitoring

Chiller Plant Analysis Tool

Software-defined IoT units

• Provide software-defined API for

accessing, configuring and controlling units

• Support fine-grained internal

configurations, e.g, adding functional

capabilities like different communication

protocols, at runtime.

• Can be composed at higher-level, via

dependency units, creating virtual

topologies (of multiple gateways) that can

be (re)configured at runtime.

• Enable decoupled and managed

configuration (via late-bound policies) to

provision the units dynamically and on-

demand.

• Have utility cost-functions that enable

pricing the IoT resources as utilities.

Software-defined
IoT Unit

Fu
n

ct
io

n
al

 A
P

I

Utility
cost-function

IoT resource and functionality binding

Late-bound
policies

 Infrastructure capabilities

G
o

ve
rn

an
ce

 A
P

I

Dependency
units

Provisioning API

Runtime
mechanisms

Runtime
controllers

(e.g, elasticity) N
o

n
-f

u
n

ct
io

n
al

 a
sp

ec
ts

Runtime composition

Fu
n

ct
io

n
al

 a
sp

ec
ts

Ecosystem for software-defined IoT

systems

 Create an ecosystem of software-defined IoT

units for the creation of software-defined IoT

systems.

 Distributing IoT units in a market-like fashion,

e.g., via IoT AppStore.

 Atomic software-defined IoT units

Custom
proc. logic

IoT data
storage

Communication

In-memory
image

VPN
Messaging

Sand
box

Network
overlay ProtocolVolatile

History

Key/Value
 store

Security
Data

quality

Outliers
filter

IoT compute

GW
runtime

Data point
controller

CEP
Component

-model

Elasticity

Auto scaling
group controller

Functional
capabilities

Non-functional
capabilities

...

...

Monitor.

Config.

The Programming Model (Origins)

• Sensors

• Databases

• Services

Galaxy SOA

Or

Or

Or

Or

Or

Or

Or

Or

Or

Or

Vert ical

Or

Or

Or

OrOr Or

Or

Or

Or

Or

Or

• define

• abstract

• fi lter

• aggregate

• compose

• redefine

• specialize

• Applicat ions

• Interfaces

• select

• use

Infrastructure

Providers

Platform

Developers
Vert ical

Developers

Applicat ion

Developers

• Large- scale

• Cloud- based

• Universal

• Extensible

• Scalable

• Fault- tolerant

Data

Sehic, S. Li, F., Nastic, S., Dustdar, S.. A Programming Model for

Context-Aware Applications in Large-Scale Pervasive Systems, The

8th IEEE International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob 2012), 8-10 October 2012,

Barcelona, Spain.

Sehic, S., Nastic, S., Vögler, M., Li, F., Dustdar, S. Entity-Adaptation -

A Programming Model for Development of Context-Aware

Applications, 29th Symposium On Applied Computing (SAC 2014),

Mobile Computing and Applications (MCA) track, 24-28 March 2014,

Gyeongju, Republic of Korea

Human augmentation –

Engineering Techniques

Specifying and controling elasticity

of human-based services

What if we need to

invoke a human?
#for a service unit analyzing chiller measurement

#SYBL.ServiceUnitLevel

Mon1 MONITORING accuracy = Quality.Accuracy

Cons1 CONSTRAINT accuracy < 0.7

Str1 STRATEGY CASE Violated(Cons1):

Notify(Incident.DEFAULT, ServiceUnitType.HBS)

SCU for independent tasks

Application /

Workflow

SCU

Provisoning Middleware

Human-Task

Requests

ICU Clouds
● Task-based crowdsourcing platforms

● Collections of experts on SN

● Enterprise ICU pools

Consumer

Problems

- Complex tasks

- Quality control

- Flexible quality requirements

SCU

ICU

Human-Task

Requests

- ICU: individuals

- SCU: a collective of

collaborative individuals

Elasticity Capabilities and APIs

 SCU execution model and lifecycle

management

 Software-defined APIs allow

controlling the elasticity of SCU

 Algorithms to deal with elasticity

capabilities programming

Mirela Riveni, Hong-Linh Truong, and Schahram Dustdar, On the Elasticity of Social

Compute Units, CAISE 2014

Conclusions (1) – Engineering

Elasticity

 The evolution of underlying systems and the utilization

of different types of resources under different models for

elasticity requires

 Complex, open hybrid service unit provisioning

frameworks

 Different strategies for dealing with different types of

tasks

 Quality issues for software, data, and people in an

integrated manner for different perspectives

 We are just at an early stage of developing techniques

for engineering elastic applications wrt multi-

dimensional elasticity

Conclusions (2) – Engineering

Elasticity

Service engineering analytics of elastic systems

 Programming hybrid compute units for elastic

processes

 Elasticity specifications and reasoning techniques

 Elasticity spaces analytics

Application domains

 “Social computer“ and smart cities (FP 7 FET Smart

Cities and PC3L)

 Computational science and engineering (FP 7

CELAR)

Thanks for your attention!

Prof. Dr. Schahram Dustdar

Distributed Systems Group
TU Wien

dsg.tuwien.ac.at

