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n Smart Evolution — People, Services, Things
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mn Computing Models

Machine-based

Computing

Human-based
Computing

S. Dustdar, H. Truong, “Virtualizing Software and Humans
for Elastic Processes in Multiple Clouds — a Service
Management Perspective”, in International Journal of Next
Generation Computing, 2012
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computing
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mn Think Ecosystems:
People, Services, Things
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mn Our Approach

= Unified service unit model (Consumption, ownership,
provisioning, price, function, etc.)

» Connecting Data Centers to loT

From physically isolated verticals to virtual verticals
Software-defined elastic data centers and I0oT ecosystems
SD units are described with well-defined API

Provisioning units for customized gateways

Dynamically composing units into runtime topologies

Runtime controlling and optimization via configuration policies
(DevOps principle)

* Human Augmentation

Human computation capabilities under elastic service units

Programming human-based units together with software-based
units



BBl Elasticity # Scaleability

%

Quality elasticity
Non-functional parameters e.g.,
performance, quality of data,
service availability, human
trust

Resource elasticity
Software / human-based
computing elements,
multiple clouds

Elasticity

&F" Costs & Benefit

elasticity
rewards, incentives



mn Vienna Elastic Computing Model

dsg.tuwien.ac.at/research/viecom

Resource Elasticity

= Multi-dimensional P — ( Individual Compute Unit )
Elasticity . Socil Compute Unit
S T—— Platform Unit |
= Service computing compustntt )
d I .x_Snﬁw'arl-hludSu\rlm Metwork Unit JI
models Software Unit |
Data Unit )
» Cloud provisioning |
models Quality Elasticity

[ Hlasticity

Costs and Benefits Elasticity

Schahram Dustdar, Hong Linh Truong:

Virtualizing Software and Humans for Elastic
Processes in Multiple Clouds- a Service : _
Management Perspective. IINGC 3(2) (2012) P iy
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mn Diverse types of elasticity requirements

Application user: “If the cost is greater than 800 Euro, there should be
a scale-in action for keeping costs in acceptable limits”

Software provider: “Response time should be less than amount X
varying with the number of users.”

Developer: “The result from the data analytics algorithm must reach a
certain data accuracy under a cost constraint. | don’t care about how
many resources should be used for executing this code.”

Cloud provider: “When availability is higher than 99% for a period of
time, and the cost is the same as for availability 80%, the cost should
increase with 10%.”
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I High Level Description of Elasticity

Requirements

SYBL (Simple Yet Beautiful
Language) for specifying
elasticity requirements

SYBL-supported requirement

levels

1.

o~ D

Cloud Service Level
Service Topology Level
Service Unit Level
Relationship Level
Programming/Code Level

#SYBL.CloudServicelLevel

Consl: CONSTRAINT responseTime <5 ms
Cons2: CONSTRAINT responseTime <10 ms
WHEN nbOfUsers > 10000

Strl: STRATEGY CASE fulfilled(Cons1) OR
fulfilled(Cons2): minimize(cost)

#SYBL.ServiceUnitLevel
Str2: STRATEGY CASE ioCost < 3 Euro :
maximize( dataFreshness)

#SYBL.CodeRegionLevel
Cons4: CONSTRAINT dataAccuracy>90%
AND cost<4 Euro

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for Controlling
Elasticity in Cloud Applications"”, 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
May 14-16, 2013, Delft, Netherlands
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B Mapping Services Structures to
Elasticity Metrics_.._....____________
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mn Elasticity Model for Cloud Services

Moldovan D., G. Copil, Truong H.-L., Dustdar S. (2013). MELA:
Monitoring and Analyzing Elasticity of Cloud Service. CloudCom
2013

Elasticity Pathway functions: to characterize the elasticity
behavior from a general/particular view

Elasticity Pathway
Quality
/ Elasticity Space Boundary
300 Quality R
Aj’ 3 Quality
,//‘\\ /4\
_ Cost [ — N *7// /‘//AL
IR O o W\ A

=~ Cost

Elasticity space functions: to determine if a el \

-~

service unit/service has the intended ~ -
“elasticity behavior” S S




mn Multi-Level Elastlc:lty Space

Service requirement
COST<=0.0034%/client/h
2.5% monthly subscription for each
service client (sensor)

e Determined Elasticity Space Boundaries

e Clients/h > 148
e 300ms < ResponseTime < 1100 ms

DataControllerServiceUnit

DataEndTopology ,

LoadBalancerServiceUnit
CloudService

EventProcessingTopoldgy '

EventProcessingServiceUnit

DataNodeServiceUnit '

nts/h (coun

Cli

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4500 5,000
Time (s)

Elasticity Space “Clients/h” Dimension

RespefiseTime

! AT
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Time (s)

500

Elasticity Space “Response Time” Dimension
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4§ Chiller Performance Metrics

43C 78 %
3.6 "
3 4 J \ Outside Air Humidity
Temperature
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0.6

0

Electrical Load 66.5 KW
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fccor Jzikeh [ ) In Temp [ <) OutTemp 8 P 312.4
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mn Software-defined IoT units

Provide software-defined API for
accessing, configuring and controlling units

Support fine-grained internal ( Provisioning API )
configurations, e.g, adding functional ~ ————
capabilities like different communication R ETEI
. units policies
protocols, at runtime. Al e 2
. . ] cost-function N
Can be composed at higher-level, via T |8 _ =
. . . Sl s Software-defined S
dependency units, creating virtual = (8 loT Unit g
topologies (of multiple gateways) that can | 5| /5. Runtime untime. 1
be (re)configured at runtime. SR
loT resource and functionality binding
Enable decoupled and managed ~ Infrastructure capabilities

v

) 4

v
Governance API

configuration (via late-bound policies) to
provision the units dynamically and on-
demand.

Have utility cost-functions that enable
pricing the 10T resources as utilities.
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BEE Ecosystem for software-defined IoT
systems
= Create an ecosystem of software-defined loT

units for the creation of software-defined loT
systems.

= Distributing loT units in a market-like fashion,
e.g., via loT AppStore.

(Atomic software-defined loT units)

Functional
capabilities

‘/\\‘ capabilities

-+ loT compute loT data Commumcatm&
storage
Elasticity Data Config.
Data point quallty Security
runtlme controller H|story Network
Custom Volatile over Iay Protocol
Monltor
proc Ioglc Auto scaling
and

Component In- memory Key, /Value VPN g oup controlle5 h-

-model CEP image Messaging filter

Non-functional

store



n The Programming Model (Origins)

DPIat;‘orm Vertical
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II| \\ nh . .
Infrastructure , ‘\ AN IR Application
Providers S AR N Developers
\ 1 \
. ! \ \
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N ! ! Vertical e use
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Applications
* Interfaces

Sehic, S. Li, F., Nastic, S., Dustdar, S.. A Programming Model for

Context-Aware Applications in Large-Scale Pervasive Systems, The
8th IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob 2012), 8-10 October 2012,

Barcelona, Spain.

Data

Sehic, S., Nastic, S., Vogler, M., Li, F., Dustdar, S. Entity-Adaptation -
A Programming Model for Development of Context-Aware
Applications, 29th Symposium On Applied Computing (SAC 2014),
Mobile Computing and Applications (MCA) track, 24-28 Marchfzb;i‘i,.

Gyeongju, Republic of Korea PO
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Human augmentation —
Engineering Techniques



ISl Srecifying and controling elasticity
of human-based services

What If we need to #for a service unit analyzing chiller measurement
invoke a human? #SYBL.ServiceUnitLevel

Monl MONITORING accuracy = Quality.Accuracy
Consl CONSTRAINT accuracy < 0.7

Strl STRATEGY CASE Violated(Consl):
Notify(Incident. DEFAULT, ServiceUnitType.HBS)

L ]
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mn SCU for independent tasks

Consumer

Application /
Workflow

Hum%

Requests

Problems

- Complex tasks

- Quiality control

- Flexible quality requirements
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mn Elasticity Capabilities and APIs

SCU Consumer
(humans/programs)

e

Task Submission
SCU Request

(Constraints Definition)

O C
(@}
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L 5
C)

Inter&épendent
tasks

SCU execution model and lifecycle

management
Software-defined APIs allow

controlling the elasticity of SCU
Algorithms to deal with elasticity

capabilities programmlng

Initial
formed

Elaéticity actions tﬁggereq at different time points at runtime

SCU Lifecycle

A

4
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\ o
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Zooming in inside operations 6 ICU

—»  Control, dependency and usage

—> Data Flow
l::> State Changes

L Software

& Task

Q Client

SCU in execution mode (and associated services)

Mirela Riveni, Hong-Linh Truong, and Schahram Dustdar, On the Elasticity of Social
Compute Units, CAISE 2014
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Sl Conclusions (1) — Engineering
Elasticity

» The evolution of underlying systems and the utilization
of different types of resources under different models for
elasticity requires

= Complex, open hybrid service unit provisioning
frameworks

= Different strategies for dealing with different types of
tasks

» Quality issues for software, data, and people in an
iIntegrated manner for different perspectives

= \We are just at an early stage of developing techniques
for engineering elastic applications wrt multi-
dimensional elasticity



Sl Conclusions (2) — Engineering
Elasticity

Service engineering analytics of elastic systems

= Programming hybrid compute units for elastic
processes

» Elasticity specifications and reasoning techniques
» Elasticity spaces analytics
Application domains

= “Social computer” and smart cities (FP 7 FET Smart
Cities and PC3L)

= Computational science and engineering (FP 7
CELAR)
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Prof. Dr. Schahram Dustdar
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