Big-data job deadlines
=k

Fault-tolerant resource allocation

Peter Bodik
Microsoft Research

Why care about deadlines for big-data jobs?

'mportant big-data jobs have to finish on time

— missed deadline = delayed updates on site, financial penalty, productivity
loss

Current clusters Z: /g/

— can’t specify deadline
in current schedulers

N
N
A\

— users don’t know how

resources map to latency

— nolise 0 5 10 15 20 25 30 35

latency [minutes]

Jockey: meeting deadlines for big-data jobs

COSmMOs 101
— big-data platform in Microsoft
— job =SQL query + user (# code

— job compiled/optimized using SQL-like optimizer to a DAG of stages/
vertices

— big jobs have 100s of stages, 1M vertices

Jockey
— input: single job with a deadline, past job runs
— offline: builds a job model
— run time: control loop adjusts allocation

rguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, Jockey: Guaranteed Job Latency in Data Parallel Clusters, in EuroSys, :

Job model = past job runs + simulation

Job model

— input: current progress, allocation -mm

— output: remaining time to completion

60 min 40 min 25

20% min min 24

Example > >)

— deadline =30 min 30% 58 min 37 min 22

— after 10 min, completed 50% 20% 56 min 36 min)
— will set allocation to 30 tokens

50% 54 min 34 min 20

Issues
— in practice need to trade off between many jobs
— “fraction completed” doesn’t capture the whole run time state

allocation

Jockey in Action

0 \ 10 20 30 40 50 60 70
time

Initial deadline: —_— allocat_ion
140 min — # running

allocation

60 -
48 -
36 -
24 -
12 -

0

]

Jockey in Action

New deadline:

/0 min

0 0 20 30 40 50 60 70
time

— allocation
— # running

allocation

0

Jockey in Action

Release

resources due
60 - to excess
48 - pessimism

36

24 -
12 - ;

0 0 20 30 40 50 60 70
time

— allocation

New deadline: —— # running

/0 min

CDF

100%

80%

60%

40%

20%

0%

Evaluation

| deadline
I

10%

20%

30%

40%

50% 60% 70% 80% 90%
job completion time relative to deadline

100% 110% 120% 130%

Jobs which met the SLO
<

CDF

100% ~

80% -

60% -

40% -

20% -

0%

. Missed 1 of
Evaluatlol‘b4 deadlines

| deadline
I

10%

20%

30%

40%

50% 60% 70% 80% 90% 100% 110% 120% 130%
job completion time relative to deadline

Jobs which met the SLO
<

CDF

100% ~
80% -

60% -

40% -
20% - /
0%

max allocation

. Missed 1 of
Evaluatlorb4 deadlines

| deadline
I

10% 20% 0% 40%

Allocated too many
resources

50% 60% 70% 80% 90% 100% 110% 120% 130%
job completion time relative to deadline

Jobs which met the SLO
<

1(

. Missed 1 of
Evaluatlorb4 deadlines

Simulator made good predictions:
80% finish before deadli

80 max allocation -~ N_. AL
(I (oo

100% ~

60% -

CDF

Jockey w/o adapting -
I deadline

40% -
20%] / .:...'
0% RTEL LY I

10% 20% 0% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130%
job completion time relative to deadline

Allocated too many Jobs which met the SLO
<
resources

Evaluatio

Simulator made good predictions:
80% finish before deadli

Missed 1 of
b4 deadlines

100% - > = =TT <
80% max allocaton - N\. "N ..
b -
L 60% -) IJockey w/o simulator
Q , |
& 40% - Jockey w/o adapting I
°® , I
0, .
20% / I deadline
O% T T T T T cestt®”” T = = T II T T 1
10% 20% 0% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130%

job completion time relative to deadline

Allocated too many

Control loop is

Jobs which met the SL&table

resources

and successful

What’s missing?

» multiple jobs/deadlines, multiple pipelines
» better representation of job state

FAULT-TOLERANT RESOURCE ALLOCATION

low to allocate services to physical machines

network core G service1 mm
aggswitches (A} A) == service2 mmm
racks DD mm ER @E= service3 BR B

Three important metrics considered together
— FT: service fault tolerance
— BW: bandwidth usage
— #M: # machine moves to reach target allocation

MM 2012, Surviving Failures in Bandwidth-Constrained Datacenters
Bodik, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A. Maltz, and lon Stoica

 Improving fault tolerance of software servic

network core

P

switches S S

containers —
racks
Complex fault domains: networking, power, cooling

power
distribution

Worst-case survival = fraction of service available
during single worst-case failure

— corresponds to service throughput during failure "

: Service allocation impacts worst-case surviy

Worst-case survival:
—red service: 0% -- same container, power
-- different containers, power

3W: Reduce bandwidth usage on constrained link:

BW = bandwidth usage in the core

Goal
— reduce cost of infrastructure
— consider other service location constraints i

#M: Need incremental allocation algorithms

High cost of machine move
— need to deploy potentially TB of data
— warm up caches
— could take tens of min, impact network

Service communication matrix
is very sparse and skewed

set of services cluster manager
forming an application service

'\
AR
I 1] i
I] o 17
iET e Rt
i i
. T)
P :
& §
Lol
{]

‘ only 2% of service pairs
communicate

I

—
=

—_— =

f m
[b 38K
Ll

- 1% of services generate
| ", 647% of traffic
| |

(subset of) ~1000 services

2(

~—Pie

~ormulate as convex optimization

spread machines across all fault domains

min aBW+ ZSrClS fol/l/lf number of machines
-z458, [T2 of service s in domain f

service fault domain
weight weight

Advantages of convex cost function

— local actions (machine swaps) lead to improvement of global
metric

— directly considers #M

Evaluation

1607% r
t; cut
29% moved
120% N
. 9% moved :
. 2.3% moved ~. \‘ H
4000 [
\
0% ® .
o
0% core BW reduction cut

-20% 0% 20% 40% 60%

Potential future work

Deadline scheduling
— multiple deadline jobs (with different penalties for missing deadline)
— dependencies across jobs
— maximize total utility
— adapt to new jobs arriving, reduces capacity, ...

Resource allocation
— consider structure of the applications, eg, data partitions and replications
— dependencies across services

