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Why care about deadlines for big-data jobs?

'mportant big-data jobs have to finish on time

— missed deadline = delayed updates on site, financial penalty, productivity
loss

Current clusters Z: /g/

— can’t specify deadline
in current schedulers
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— users don’t know how

resources map to latency

— nolise 0 5 10 15 20 25 30 35

latency [minutes]



Jockey: meeting deadlines for big-data jobs

COSmMOs 101
— big-data platform in Microsoft
— job =SQL query + user (# code

— job compiled/optimized using SQL-like optimizer to a DAG of stages/
vertices

— big jobs have 100s of stages, 1M vertices

Jockey
— input: single job with a deadline, past job runs
— offline: builds a job model
— run time: control loop adjusts allocation

rguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, Jockey: Guaranteed Job Latency in Data Parallel Clusters, in EuroSys, :




Job model = past job runs + simulation

Job model

— input: current progress, allocation -mm

— output: remaining time to completion

60 min 40 min 25

20% min min 24

Example > > )

— deadline =30 min 30% 58 min 37 min 22

— after 10 min, completed 50% 20% 56 min 36 min )
— will set allocation to 30 tokens

50% 54 min 34 min 20

Issues
— in practice need to trade off between many jobs
— “fraction completed” doesn’t capture the whole run time state



allocation
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What’s missing?

»  multiple jobs/deadlines, multiple pipelines
» better representation of job state



FAULT-TOLERANT RESOURCE ALLOCATION



low to allocate services to physical machines

network core G service1 mm
aggswitches (A} A) == service2 mmm
racks DD mm ER @E= service3 BR B

Three important metrics considered together
— FT: service fault tolerance
— BW: bandwidth usage
— #M: # machine moves to reach target allocation

MM 2012, Surviving Failures in Bandwidth-Constrained Datacenters
Bodik, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani, David A. Maltz, and lon Stoica



 Improving fault tolerance of software servic

network core

P

switches S S

containers —
racks
Complex fault domains: networking, power, cooling

power
distribution

Worst-case survival = fraction of service available
during single worst-case failure

— corresponds to service throughput during failure "



: Service allocation impacts worst-case surviy

Worst-case survival:
—red service: 0% -- same container, power
-- different containers, power



3W: Reduce bandwidth usage on constrained link:

BW = bandwidth usage in the core

Goal
— reduce cost of infrastructure
— consider other service location constraints i



#M: Need incremental allocation algorithms

High cost of machine move
— need to deploy potentially TB of data
— warm up caches
— could take tens of min, impact network



Service communication matrix
is very sparse and skewed

set of services cluster manager
forming an application service
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~ormulate as convex optimization

spread machines across all fault domains

min aBW+ ZSrClS fol/l/lf number of machines
-z458, [ T2 of service s in domain f

service fault domain
weight weight

Advantages of convex cost function

— local actions (machine swaps) lead to improvement of global
metric

— directly considers #M
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Potential future work

Deadline scheduling
— multiple deadline jobs (with different penalties for missing deadline)
— dependencies across jobs
— maximize total utility
— adapt to new jobs arriving, reduces capacity, ...

Resource allocation
— consider structure of the applications, eg, data partitions and replications
— dependencies across services



