A Control Approach for Performance of Big Data Systems

Mihaly Berekmeri, Damian Serrano, Sara Bouchenak, Nicolas Marchand, Bogdan Robu

GIPSA - LIG - Grenoble University, France

LCCC'2014, Lund, Sweden

The structure of the presentation

- 1. Introduction
 - Big Data MapReduce
 - State of the art
- 2. Experimental setup
 - Sensors / Actuators
 - MRBS
- 3. Control
 - Our model
 - Control architecture
 - Control examples
- 4. Conclusions and Future Work

Big Data, Big Problems

Problem:

Vast amounts of data generated daily

- Facebook:
 - 1.11 x 10⁹ active users, 50% log in daily
 - 3.2 x 10⁹ likes and comments/day
 - > 100 clusters (largest has > 100PB, 200 million files)

- CERN's LHC: Up to 1 PB/s during experiments How do we store it? How do we process it?

mapreduce patterns

mapreduce patterns mapreduce pattern example mapreduce pattern recognition mapreduce pattern matching

MapReduce Patterns, Algorithms, and Us highlyscalable.wordpress.com/2012/02/01/map Feb 1, 2012 - In this article I digested a number of I algorithms to give a systematic view of the different

MapReduce Design Patterns - O'Reilly M shop.oreilly.com/product/0636920025122.do -★★★★★ Rating: 4.3 - 8 reviews This handy guide brings together a unique collection that will save you time and effort regardless of the d

Ben Chams - Fotolia

MapReduce

Programming model introduced by J. Dean and S. Ghemawat (Google) in 2004 as a PaaS paradigm -> large scale distributed data processing on clusters of commodity computers

Automatic features: data partitioning and replication, task scheduling, fault tolerance

Used by the biggest companies :

Amazon, eBay, Facebook, LinkedIn, Twitter, Yahoo, Microsoft...

Wide range of applications :

log analysis, data mining, web search engines, scientific computing, business intelligence,...

MapReduce

- Advantages:
 - Hides many of the complexities of parallelism
 - Usage simplicity and great scalability
- Challenges:
 - Difficult to provision for MR, when faced with a changing workload
 - Complex architecture, many points of contention: CPU,
 IO, network skews, failures, node homogeneity problems
 - → assuring SLA performance objectives poses considerable challenges

State of the Art

- Existing models
 - predict the steady state response of MapReduce jobs and do not capture system dynamics
 - \rightarrow not suitable for control using control theory
 - assume that every job is running in a isolated virtual cluster
 - \rightarrow don't deal with concurrent job executions, unlikely in real life scenarios

For modeling, we've essentially started from scratch.

State of the Art

- Existing controls
 - Focus on static, off-line configuration optimization for dead-line assurance
 - \rightarrow not robust enough
 - Dedicated cluster or job priorities
 - \rightarrow bad performance for jobs not bounded by latency constraints
 - Job level controllers, improving on fair scheduler: off-line profile, online adjustment based on job progress

Objectives

- Develop a dynamical model for a concurrent MapReduce workload -> holistic, scalable approach
- Develop a test framework for control strategies
- Propose control strategies that assure SLA compliance
- **Consideration:**
 - Implementations evolve rapidly, to be relevant, remain agnostic to implementation

Experimental setup

Stop the Bashing

Sensors & Actuators

- Linux Bash scripts: shell scripts are widely used in the UNIX world.
 - excellent for speeding up repetitive tasks
 - they can be as simple as a set of commands, or they can orchestrate complex tasks.
- Client/Server Java application

Sensors

- Problem: most metrics are not readily available online -> systems not conceived with online measurements in mind
- Non-intrusive approach -> process software logs files online
- Metrics: average performance, availability, throughput in the last time window
- SED, AWK -> Powerful tools to analyze log files

Actuators

- The choice of control inputs out of Hadoop's many parameters (more than 170) is not straightforward.
- Software implementations changing rapidly
 - -> remain implementation agnostic
- Number of Mappers and Reducers
- Horizontal scaling: changing the number of nodes

• Scripts that start up slave node services

- the MapReduce Benchmark Suite (MRBS) developed by Sangroya et al. (2012)
- is a performance and dependability benchmark suite for MapReduce systems.
- most previous evaluations used micro-benchmarks

Advantages:

- representative of fully distributed, concurrent applications
- provide realistic multiuser workloads
- dependability benchmarking

Domain	Computation vs. data access	Dataload	Execution mode	
Recommendation system	compute-oriented+	dataload 100,000 ratings, 1000 users, 1700 movies	interactive* /	
		dataload+ 1 million ratings, 6000 users, 4000 movies	batch	
		dataload++ 10 million ratings, 72,000 , 10,000 movies		
Business intelligence	data-oriented+	dataload 1GB	interactive* / batch	
		dataload+ 10GB		
		dataload++ 100GB	1	
Bioinformatics	data-oriented / compute-oriented	dataload genomes of 2,000,000 to 3,000,000 DNA characters	interactive* / batch	
Text processing	data-oriented / compute-oriented	dataload text files (1GB)	interactive /	
		dataload+ text files (10GB)	batch*	
		dataload++ text files (100GB)		
Data mining	data-oriented / compute-oriented	dataload 5000 documents, 5 newsgroups, 600 control charts	interactive / batch*	
		dataload+ 10,000 documents, 10 newsgroups, 1200 control charts		
		dataload++ 20,000 documents, 20 newsgroups, 2400 control charts		

Experimental setup

Experimental setup

LCCC'2014, Lund, Sweden

Experimental setup

Cluster	CPU	Memory	Storage	Network
60 nodes	4 cores/CPU	15GB	298GB	Infiniband
Grid5000	Intel			20G
	2.53GHz			

- data intensive BI workload is selected as our workload
- BI benchmark consists of a decision support system for a wholesale supplier
- request emulate a typical business oriented query that processes a large amount of data (10GB)

Control

Modeling challenges & Insights

Capturing system dynamics

- our control objective is selected as keeping the average service time below a threshold in the last time window
- Implementation agnostic: parameters that have a high influence regardless of the MapReduce version used
- Complex system architecture
 - linearize around an operating point defined by a baseline number of nodes and clients
 - the point of full utilization is the set-point

Clients increasing

Model structure

- grey-box modeling technique
- predicts MapReduce cluster performance, in our case average service time, based on the number of nodes and the number of clients

Identification

• both of the models were identified using step response identification (prediction error estimation method)

LCCC'2014, Lund, Sweden

Control architecture

- Challenges:
 - large deadtime
 - as the system performance may very over time because of the many points of contention a robust controller is needed

Baseline experiment

LCCC'2014, Lund, Sweden

RELAXED PERFORMANCE – MINIMAL RESOURCE CONTROL

LCCC'2014, Lund, Sweden

STRICT PERFORMANCE – PI + FEEDFORWARD CONTROL

LCCC'2014, Lund, Sweden

Conclusions

Conclusions

- This paper presents:
 - design, implementation and evaluation of the first dynamic model for MapReduce systems
 - development and successful implementation of a control framework for assuring service time constraints
- The control architecture is implemented on a Hadoop cluster using a data intensive workload
- Our experiments show that the controllers are successful in keeping the SLA

Future Work

- Add other metrics to our model such as throughput, availability, reliability
- Improve upon our identification by making it online
- Minimize the number of changes in the control input. Other control techniques such as an event-based controller for example are being studied now
- Implementing the control framework in several online cloud frameworks, with more complex scenarios

Introduction	Experimental setup	

Thank you for your attention! Questions?