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Big Data, Big Problems

Problem:

Vast amounts of data generated daily

— Facebook:
e 1.11 x 10° active users, 50% log in daily
e 3.2 x 10° likes and comments/day

e > 100 clusters (largest has > 100PB,
200 million files)

— CERN’s LHC: Up to 1 PB/s during experiments
How do we store it? How do we process it?
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MapReduce

Programming model introduced by J. Dean and S Gé::H-erﬁaWat
(Google) in 2004 as a PaaS paradigm -> large scale distributed
data processing on clusters of commodity computers

Automatic features: data partitioning and replication, task
scheduling, fault tolerance

Used by the biggest companies :
Amazon, eBay, Facebook, LinkedIn, Twitter, Yahoo, Microsoft...
Wide range of applications :

log analysis, data mining, web search engines, scientific
computing, business intelligence,...



MapReduce

— Advantages: |
— Hides many of the complexities of parallelism
— Usage simplicity and great scalability

— Challenges:

— Difficult to provision for MR, when faced with a changing
workload

— Complex architecture, many points of contention: CPU,
10, network skews, failures, node homogeneity problems

— assuring SLA performance objectives poses considerable
challenges
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State of the Art

e Existing models

e predict the steady state response of
MapReduce jobs and do not capture system
dynamics

— not suitable for control using control theory

* assume that every job is running in a isolated
virtual cluster

—> don’t deal with concurrent job executions,
unlikely in real life scenarios

For modeling, we’ve essentially started from
scratch.
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State of the Art

 Existing controls
e Focus on static, off-line configuration
optimization for dead-line assurance

- not robust enough

e Dedicated cluster or job priorities

- bad performance for jobs not bounded by
latency constraints

e Job level controllers, improving on fair
scheduler: off-line profile, online adjustment

based on job progress



Introduction

Objectives

* Develop a dynamical model for a concurrent
MapReduce workload -> holistic, scalable
approach

* Develop a test framework for control strategies

* Propose control strategies that assure SLA
compliance
Consideration:

 Implementations evolve rapidly, to be
relevant, remain agnostic to implementation
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Experimental setup

Experimental setup
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Experimental setup

Stop the Bashing

}m Sensors & Actuators

e Linux Bash scripts: shell scripts are widely used in
the UNIX world.

e excellent for speeding up repetitive tasks

e they can be as simple as a set of commands, or
they can orchestrate complex tasks.

 Client/Server Java application
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Experimental setup

Sensors

 Problem: most metrics are not readily available
online -> systems not conceived with online
measurements in mind

 Non-intrusive approach -> process software logs
files online

e Metrics: average  performance, availability,
throughput in the last time window

e SED, AWK -> Powerful tools to analyze log files
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Experimental setup

Actuators

e The choice of control inputs out of Hadoop’s many
parameters (more than 170) is not straightforward.
e Software implementations changing rapidly

-> remain implementation agnostic
e Number of Mappers and Reducers
e Horizontal scaling: changing the number of nodes
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Experimental setup

Actuators

e Scripts that start up slave node services

e Refresh slave nodes list at the

master

MapPReduce Stalus —p
Job Submission  =—————- -
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Experimental setup

e the MapReduce Benchmark Suite (MRBS)
developed by Sangroya et al. (2012)

* is a performance and dependability benchmark
suite for MapReduce systems.

* most previous evaluations used micro-benchmarks
Advantages:

e representative of fully distributed, concurrent
applications

e provide realistic multiuser workloads
e dependability benchmarking

LCCC'2014, Lund, Sweden 14



Experimental setup

MRBS

Benchmark suite
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Experimental setup

MRBS

Domain Computation vs. Dataload Execution
data access mode
Recommendation | compute-oriented+ | dataload 100,000 ratings, 1000 users, 1700 movies interactive™ /
system dataload+ 1 million ratings, 6000 users, 4000 movies batch
dataload++ 10 million ratings, 72,000 , 10,000 movies
Business data-oriented+ dataload 1GB interactive™ /
intelligence dataload+ 10GB batch
dataload++ 100GB
Bioinformatics data-oriented / dataload genomes of 2,000,000 to 3,000,000 DNA interactive™ /
compute-oriented characters batch
Text processing data-oriented / dataload text files (1GB) interactive /
compute-oriented | dataload+ text files (10GB) batch®
dataload++ text files (100GE)
Data mining data-oriented / dataload 5000 documents, 5 newsgroups, 600 control interactive /
compute-oriented | charts batch”
dataload+ 10,000 documents, 10 newsgroups, 1200
control charts
dataload++ 20,000 documents, 20 newsgroups, 2400
control charts
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Experimental setup

MRBS
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Experimental setup

MRBS
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Experimental setup

MRB
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Experimental setup

Experimental setup

Cluster CPU Memory Storage Network
60 nodes | 4 cores/CPU 15GB 298GB Infiniband

Grid5000 Intel 20G

2.53GHz

e data intensive Bl workload is selected as our
workload

* Bl benchmark consists of a decision support system
for a wholesale supplier

e request emulate a typical business oriented query
that processes a large amount of data (10GB )
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Modeling challenges & Insights

e Capturing system dynamics
e our control objective is selected as keeping the

average service time below a threshold in the
last time window

 Implementation agnostic: parameters that have a
high influence regardless of the MapReduce version
used

e Complex system architecture

e linearize around an operating point defined by a
baseline number of nodes and clients

e the point of full utilization is the set-point
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Model structure

e grey-box modeling technique

e predicts MapReduce cluster performance, in our
case average service time, based on the number of
nodes and the number of clients
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ldentification

* both of the models were identified using step response
identification (prediction error estimation method)
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Control architecture

e Challenges:

e large deadtime

e as the system performance may very over time because
of the many points of contention a robust controller is

needed
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Baseline experiment

Open loop experiment. 100% more clients are added.
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RELAXED PERFORMANCE —
MINIMAL RESOURCE CONTROL

Pl feedback control. 100% more clients are added.
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STRICT PERFORMANCE —
Pl + FEEDFORWARD CONTROL

Pl feedback + feedforward control. 100% more clients are added.
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Conclusions

Conclusions

e This paper presents:
e design, implementation and evaluation of the first
dynamic model for MapReduce systems

e development and successful implementation of a control
framework for assuring service time constraints

e The control architecture is implemented on a
Hadoop cluster using a data intensive workload

e Our experiments show that the controllers are
successful in keeping the SLA
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Future Work

e Add other metrics to our model such as
throughput, availability, reliability

* Improve upon our identification by making it online

e Minimize the number of changes in the control
input. Other control techniques such as an event-
nased controller for example are being studied now

* Implementing the control framework in several on-
ine cloud frameworks, with more complex
scenarios
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