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Motivation

Linear discrete-time system:

Σ : x+ = Ax + Bu

with state space Rn and input space Rm.

Safe linear temporal logic specification (LTL) ϕ over atomic propositions:

P = {p1, . . . , p`}

with each pi ∈ P a polytope in Rn.

Expressive specifications:

sequencing of actions, “if then else” requirements, fault recovery, ...
guaranteed to only define safety properties;
negation is only allowed on atomic propositions, until is replaced with wait.
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Cruise Control Example
Compliance with Speed Limits

Dynamics:

ẋ =

24 0 −1 1
ks
m − kd

m
kd
m

0 0 0

35 x +

240
0
1

35 u

with x = (d , v1, v2) ∈ R3 and u ∈ R.

d distance between the truck and the
trailer
v1 velocity of the truck
v2 velocity of the trailer
u acceleration

Specification:

compliance with speed limits va, vb after
at most T ∈ N time-steps
acceleration constraints u ∈ [u, u]
distance constraints d ∈ [d , d ]

va1 va2d

c1

c2

d0
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Safe LTL formula

2(D ∧ U ∧ ϕa ∧ ϕb)

with ϕa and ϕb given by

ma =⇒ 3≤T (ta W mb)

mb =⇒ 3≤T (tb W ma)

mi : vi is active i ∈ {a, b}
ti : v1 ≤ vi
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Reducing Controller Synthesis to a Safety Game
[Kupferman and Vardi, 2001]

Construct the bad-prefix automaton A¬ϕ
from the safe LTL formula ϕ:

A¬ϕ = (Q,F , δ, g, 2P);

Compose A¬ϕ with the control system Σ:

S = A¬ϕ‖Σ;

Given the safe set K = (Q\F )× H ⊆ (Q\F )× Rn

compute its largest controlled invariant subset:

K(K ) =
˘

(q, x) ∈ Q × Rn | ∃ u ∈ Rm, Postu(q, x) ⊆ K
¯
.

We know that:

(q, x) ∈ K(K )⇔ existence of a control strategy enforcing ϕ from x .
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Computation of Controlled Invariant Subsets
Basic Algorithm

Fixed point computation [Bertsekas, 1972]:

Kj+1 = pre(Kj ) ∩ Kj , K0 = K

with pre(Kj ) being the set of states (q, x) ∈ Q × Rn for which there exists an
input u ∈ Rm forcing a transition to some state in Kj .

Safe set K = (Q\F )× H ⊆ (Q\F )× Rn given by:

H =

p[
i=1

Hi , each Hi is a polytope

⇒ each Kj is computable and the iteration is known to asymptotically converge:

K(K ) = lim
j→∞

Kj .
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Computation of Controlled Invariant Subsets
Several Problems

No termination guarantees;

Set iterates Kj are not controlled invariant;

Solutions for K = (Q\F )× H, if H is convex :

[De Santis et al., 2004]: iteration is initialized with a controlled invariant set
K0 ⊂ K ;
[Blanchini and Miani, 2008]: modified iteration using contractive sets;
Several other methods based on approximations of K ;

For H given as union of polytopes, the iterative computation introduces
combinatorial complexity!

In this work we approximate K by sets adapted to the dynamics.
(Finite termination and symbolic implementation)
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Adapted Sets

Any controllable linear system can be transformed to the special Brunovsky
normal form by an invertible linear change of coordinates and feedback:

A =

2666664
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

3777775 , b =

2666664
0
0
...
0
1

3777775 ;

We can under-approximate the safe set K = (Q\F )× H by Ǩ = (Q\F )× Ȟ:

Ȟ =

p[
i=1

Bi ⊆ H

with each box Bi defined by Bi = [ai
1, bi

1]× . . .× [ai
n, bi

n].
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Main Results
Termination

Theorem (Finite termination)

Consider the composition A¬ϕ‖Σ where Σ is in special Brunovsky normal form and
K = (Q\F )× H with H being a finite union of boxes. Then the largest controlled
invariant subset of Ǩ can be computed in finitely many steps.

This result was first proved in [Tabuada and Pappas, 2003] and was used
in [Tabuada and Pappas, 2006] to show, for the first time, that controllers can be
synthesized to enforce LTL properties on control systems.

How can we make use of this result when H is not a union of boxes?
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Main Results
Completeness

We can under-approximate H by a finite union of boxes Ȟ.

We say that a set I ⊆ Rn is strictly inside a set J ⊆ Rn if there exists γ > 0 for which:

I + γBγ(0) ⊆ J.

I

Theorem (Completeness)

If there exists a controlled invariant set I ⊆ K(K ) for which Iq is strictly inside Kq(K ),
then there exists an under-approximation Ǩ = (Q\F )× Ȟ of K , with Ȟ being a finite
union of boxes, such that I ⊆ K(Ǩ ).
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Main Results
Symbolic Implementation

Use binary decision diagrams (BDDs) to implement the iteration:

Kj+1 = pre(Kj ) ∩ Kj .

Each set Kj is encoded by a BDD;
The combination of the special Brunovsky normal form with adapted sets
results in a simple expression for pre(Bi ) with Bi = [ai

1, b
i
1]× . . .× [ai

n, bi
n]:

pre(Bi ) = R× [ai
1, b

i
1]× . . .× [ai

n−1, b
i
n−1];

Symbolical computation of pre(Kj ) can be done by shifting and variable
reordering.
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Cruise Control Example
Computational Results

Problem description:

Σ : 3 states, 1 input;

Safe LTL formula:

2(D ∧ U ∧ ϕa ∧ ϕb ∧ ϕc)

Parameters:

T ∈ {2, 10} number of time steps
after which speed limit is enforced;

N ∈ {10, . . . , 13} number of bits
(2N boxes) used in each dimension.

Error bound:

ê =
volK(K̂ )− volK(Ǩ )

volK(Ǩ )
≥

volK(K )− volK(Ǩ )

volK(K )

va1 va2d

c1

c2

d0
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ê =
volK(K̂ )− volK(Ǩ )
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N\T 2 10
tr ê tr ê

10 1m39s 2.31 2m40s 2.38
11 4m09s 1.01 4m31s 1.04
12 6m48s 0.58 7m52s 0.62
13 10m38s 0.43 16m01s 0.46
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Comparison with the Polyhedral Approach

Example 5.1 in [Pérez et al., 2011]:
3 states + 2 inputs

Workspace:
X = [0, 30]3 and U = [0, 2]2

Obstacles in the state space:

O1 = [−5, 15]3

O2 = [−5, 5]3

O3 = [−15, 10]3

Obstacles in the input space:

V1 = [−3/2, 1/2]2

V2 = [−1/4, 1/4]2

V3 = [2/5, 1/5]2

Specification with increasing complexity:

ϕ0 = �(X × U)

ϕ1 = �((X ∧ ¬O1)× U)

ϕ2 = �(X × (U ∧ ¬V1))

ϕ3 = �((X ∧ ¬O1)× (U ∧ ¬V1))

ϕ4 = �((X ∧2
i=1 ¬Oi )× (U ∧2

i=1 ¬Vi ))

ϕ5 = �((X ∧3
i=1 ¬Oi )× (U ∧2

i=1 ¬Vi ))

ϕ6 = �((X ∧3
i=1 ¬Oi )× (U ∧3

i=1 ¬Vi ))
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vv0 vv1 vv2
 

 

polyhedral

symbolic
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Comparison with the Polyhedral Approach

Example 5.1 in [Pérez et al., 2011]:
3 states + 2 inputs

Workspace:
X = [0, 30]3 and U = [0, 2]2

Obstacles in the state space:

O1 = [−5, 15]3

O2 = [−5, 5]3

O3 = [−15, 10]3

Obstacles in the input space:

V1 = [−3/2, 1/2]2

V2 = [−1/4, 1/4]2

V3 = [2/5, 1/5]2

Specification with increasing complexity:

ϕ0 = �(X × U)

ϕ1 = �((X ∧ ¬O1)× U)

ϕ2 = �(X × (U ∧ ¬V1))

Computation times:
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Summary and Remarks

Algorithm to synthesize controllers enforcing safe LTL specification on controllable
linear systems:

Termination guarantees;

Best possible completeness guarantees;

Full symbolic implementation;

Five continuous variables (state of the art).

What is next?

Boxes are not good enough
(too many required to obtain reasonable approximations, CoD);

Find more general polyhedra for which termination is guaranteed.
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