Controller synthesis for linear systems and safe linear-time temporal logic

Matthias Rungger¹, Manuel Mazo², and Paulo Tabuada¹

¹Cyber-Physical Systems Laboratory Department of Electrical Engineering University of California at Los Angeles

²Deft Center for Systems and Control TUDelft Linear discrete-time system:

$$\Sigma: \quad x^+ = Ax + Bu$$

with state space \mathbb{R}^n and input space \mathbb{R}^m .

Linear discrete-time system:

$$\Sigma$$
: $x^+ = Ax + Bu$

with state space \mathbb{R}^n and input space \mathbb{R}^m .

Safe linear temporal logic specification (LTL) φ over atomic propositions:

$$\mathcal{P} = \{\boldsymbol{p}_1, \ldots, \boldsymbol{p}_\ell\}$$

with each $p_i \in \mathcal{P}$ a polytope in \mathbb{R}^n .

Linear discrete-time system:

$$\Sigma$$
: $x^+ = Ax + Bu$

with state space \mathbb{R}^n and input space \mathbb{R}^m .

Safe linear temporal logic specification (LTL) φ over atomic propositions:

$$\mathcal{P} = \{\boldsymbol{p}_1, \ldots, \boldsymbol{p}_\ell\}$$

with each $p_i \in \mathcal{P}$ a polytope in \mathbb{R}^n .

- Expressive specifications:
 - sequencing of actions, "if then else" requirements, fault recovery, ...
 - guaranteed to only define safety properties;
 - negation is only allowed on atomic propositions, *until* is replaced with *wait*.

Compliance with Speed Limits

Dynamics:

$$\dot{x} = \begin{bmatrix} 0 & -1 & 1\\ \frac{k_s}{m} & -\frac{k_d}{m} & \frac{k_d}{m}\\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 0\\ 1\\ \end{bmatrix} u$$

with $x = (d, v_1, v_2) \in \mathbb{R}^3$ and $u \in \mathbb{R}$.

- d distance between the truck and the trailer
- v₁ velocity of the truck
- v₂ velocity of the trailer
- u acceleration

Compliance with Speed Limits

Dynamics:

$$\dot{x} = \begin{bmatrix} 0 & -1 & 1\\ \frac{k_s}{m} & -\frac{k_d}{m} & \frac{k_d}{m}\\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 0\\ 1\\ 1 \end{bmatrix} u$$

with $x = (d, v_1, v_2) \in \mathbb{R}^3$ and $u \in \mathbb{R}$.

- d distance between the truck and the trailer
- v₁ velocity of the truck
- v₂ velocity of the trailer
- u acceleration
- Specification:
 - compliance with speed limits v_a , v_b after at most $T \in \mathbb{N}$ time-steps
 - acceleration constraints $u \in [\underline{u}, \overline{u}]$
 - distance constraints $d \in [\underline{d}, \overline{d}]$

Compliance with Speed Limits

Dynamics:

$$\dot{x} = \begin{bmatrix} 0 & -1 & 1\\ \frac{k_s}{m} & -\frac{k_d}{m} & \frac{k_d}{m}\\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} u$$

with $x = (d, v_1, v_2) \in \mathbb{R}^3$ and $u \in \mathbb{R}$.

- d distance between the truck and the trailer
- v_1 velocity of the truck
- v₂ velocity of the trailer
- u acceleration
- Specification:
 - compliance with speed limits v_a , v_b after at most $T \in \mathbb{N}$ time-steps
 - acceleration constraints $u \in [\underline{u}, \overline{u}]$
 - distance constraints $d \in [\underline{d}, \overline{d}]$

Safe LTL formula

 $\Box (D \land U \land \varphi_a \land \varphi_b)$

with φ_a and φ_b given by

 $\begin{array}{l} m_a \implies \diamond_{\leq T}(t_a \mathrel{\tt W} m_b) \\ m_b \implies \diamond_{\leq T}(t_b \mathrel{\tt W} m_a) \end{array}$

m_i: *v_i* is active *i* ∈ {*a*, *b*}
 t_i: *v*₁ ≤ *v_i*

[Kupferman and Vardi, 2001]

Construct the bad-prefix automaton A_{¬φ} from the safe LTL formula φ:

$$A_{\neg\varphi} = (Q, F, \delta, g, 2^{\mathcal{P}});$$

[Kupferman and Vardi, 2001]

Construct the bad-prefix automaton A_{¬φ} from the safe LTL formula φ:

$$A_{\neg\varphi} = (Q, F, \delta, g, 2^{\mathcal{P}});$$

• Compose $A_{\neg\varphi}$ with the control system Σ :

 $S = A_{\neg \varphi} \| \Sigma;$

[Kupferman and Vardi, 2001]

Construct the bad-prefix automaton A_{¬φ} from the safe LTL formula φ:

$$A_{\neg\varphi} = (Q, F, \delta, g, 2^{\mathcal{P}});$$

• Compose $A_{\neg\varphi}$ with the control system Σ :

$$S = A_{\neg \varphi} \| \Sigma;$$

Given the safe set K = (Q\F) × H ⊆ (Q\F) × ℝⁿ compute its largest controlled invariant subset:

$$\mathcal{K}(\mathcal{K}) = \{(q, x) \in Q \times \mathbb{R}^n \mid \exists u \in \mathbb{R}^m, \operatorname{Post}_u(q, x) \subseteq \mathcal{K}\}.$$

Paulo Tabuada (CyPhyLab - UCLA)

[Kupferman and Vardi, 2001]

Construct the bad-prefix automaton A_{¬φ} from the safe LTL formula φ:

$$A_{\neg\varphi} = (Q, F, \delta, g, 2^{\mathcal{P}});$$

• Compose $A_{\neg\varphi}$ with the control system Σ :

$$S = A_{\neg \varphi} \| \Sigma;$$

Given the safe set K = (Q\F) × H ⊆ (Q\F) × ℝⁿ compute its largest controlled invariant subset:

$$\mathcal{K}(\mathcal{K}) = \{(q, x) \in Q \times \mathbb{R}^n \mid \exists u \in \mathbb{R}^m, \operatorname{Post}_u(q, x) \subseteq \mathcal{K}\}.$$

[Kupferman and Vardi, 2001]

Construct the bad-prefix automaton A_{¬φ} from the safe LTL formula φ:

$$A_{\neg\varphi} = (Q, F, \delta, g, 2^{\mathcal{P}});$$

• Compose $A_{\neg\varphi}$ with the control system Σ :

$$S = A_{\neg \varphi} \| \Sigma;$$

Given the safe set K = (Q\F) × H ⊆ (Q\F) × ℝⁿ compute its largest controlled invariant subset:

$$\mathcal{K}(\mathcal{K}) = \{(q, x) \in Q \times \mathbb{R}^n \mid \exists u \in \mathbb{R}^m, \operatorname{Post}_u(q, x) \subseteq \mathcal{K}\}.$$

We know that:

 $(q, x) \in \mathcal{K}(\mathcal{K}) \Leftrightarrow$ existence of a control strategy enforcing φ from x.

Computation of Controlled Invariant Subsets Basic Algorithm

Fixed point computation [Bertsekas, 1972]:

$$K_{j+1} = \operatorname{pre}(K_j) \cap K_j, \quad K_0 = K$$

with pre(K_j) being the set of states $(q, x) \in Q \times \mathbb{R}^n$ for which there exists an input $u \in \mathbb{R}^m$ forcing a transition to some state in K_j .

Computation of Controlled Invariant Subsets Basic Algorithm

Fixed point computation [Bertsekas, 1972]:

$$K_{j+1} = \operatorname{pre}(K_j) \cap K_j, \quad K_0 = K$$

with pre(K_j) being the set of states $(q, x) \in Q \times \mathbb{R}^n$ for which there exists an input $u \in \mathbb{R}^m$ forcing a transition to some state in K_j .

Safe set $K = (Q \setminus F) \times H \subseteq (Q \setminus F) \times \mathbb{R}^n$ given by:

$$H = \bigcup_{i=1}^{p} H_i$$
, each H_i is a polytope

 \Rightarrow each K_i is computable and the iteration is known to asymptotically converge:

$$\mathcal{K}(K) = \lim_{j \to \infty} K_j.$$

Computation of Controlled Invariant Subsets Several Problems

No termination guarantees;

Computation of Controlled Invariant Subsets Several Problems

- No termination guarantees;
- Set iterates *K_j* are not controlled invariant;

Computation of Controlled Invariant Subsets

- No termination guarantees;
- Set iterates K_i are not controlled invariant;
- Solutions for $K = (Q \setminus F) \times H$, if *H* is convex :
 - **[De Santis et al.**, 2004]: iteration is initialized with a controlled invariant set $K_0 \subset K$;
 - [Blanchini and Miani, 2008]: modified iteration using contractive sets;
 - Several other methods based on approximations of K;

Computation of Controlled Invariant Subsets

- No termination guarantees;
- Set iterates K_i are not controlled invariant;
- Solutions for $K = (Q \setminus F) \times H$, if H is convex :
 - **[De Santis et al.**, 2004]: iteration is initialized with a controlled invariant set $K_0 \subset K$;
 - [Blanchini and Miani, 2008]: modified iteration using contractive sets;
 - Several other methods based on approximations of K;
- For *H* given as union of polytopes, the iterative computation introduces combinatorial complexity!

Computation of Controlled Invariant Subsets

- No termination guarantees;
- Set iterates K_i are not controlled invariant;
- Solutions for $K = (Q \setminus F) \times H$, if *H* is convex :
 - **[De Santis et al.**, 2004]: iteration is initialized with a controlled invariant set $K_0 \subset K$;
 - [Blanchini and Miani, 2008]: modified iteration using contractive sets;
 - Several other methods based on approximations of K;
- For *H* given as union of polytopes, the iterative computation introduces combinatorial complexity!

In this work we approximate K by sets adapted to the dynamics. (Finite termination and symbolic implementation) Any *controllable* linear system can be transformed to the special Brunovsky normal form by an invertible linear change of coordinates and feedback:

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix};$$

Any controllable linear system can be transformed to the special Brunovsky normal form by an invertible linear change of coordinates and feedback:

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix};$$

■ We can *under-approximate* the safe set $K = (Q \setminus F) \times H$ by $\check{K} = (Q \setminus F) \times \check{H}$:

$$\check{H} = \bigcup_{i=1}^{p} B_i \subseteq H$$

with each box B_i defined by $B_i = [a_1^i, b_1^i] \times \ldots \times [a_n^i, b_n^i]$.

Theorem (Finite termination)

Consider the composition $A_{\neg\varphi} \| \Sigma$ where Σ is in special Brunovsky normal form and $K = (Q \setminus F) \times H$ with H being a finite union of boxes. Then the largest controlled invariant subset of \check{K} can be computed in finitely many steps.

Theorem (Finite termination)

Consider the composition $A_{\neg\varphi} \| \Sigma$ where Σ is in special Brunovsky normal form and $K = (Q \setminus F) \times H$ with H being a finite union of boxes. Then the largest controlled invariant subset of \check{K} can be computed in finitely many steps.

This result was first proved in [Tabuada and Pappas, 2003] and was used in [Tabuada and Pappas, 2006] to show, for the first time, that controllers can be synthesized to enforce LTL properties on control systems.

Theorem (Finite termination)

Consider the composition $A_{\neg\varphi} \| \Sigma$ where Σ is in special Brunovsky normal form and $K = (Q \setminus F) \times H$ with H being a finite union of boxes. Then the largest controlled invariant subset of \check{K} can be computed in finitely many steps.

This result was first proved in [Tabuada and Pappas, 2003] and was used in [Tabuada and Pappas, 2006] to show, for the first time, that controllers can be synthesized to enforce LTL properties on control systems.

How can we make use of this result when *H* is not a union of boxes?

Completeness

We can under-approximate *H* by a finite union of boxes \check{H} .

Main Results

Completeness

We can under-approximate H by a finite union of boxes \check{H} .

We say that a set $I \subseteq \mathbb{R}^n$ is strictly inside a set $J \subseteq \mathbb{R}^n$ if there exists $\gamma > 0$ for which:

 $I + \gamma \mathcal{B}_{\gamma}(\mathbf{0}) \subseteq J.$

Main Results

Completeness

We can under-approximate H by a finite union of boxes \check{H} .

We say that a set $I \subseteq \mathbb{R}^n$ is strictly inside a set $J \subseteq \mathbb{R}^n$ if there exists $\gamma > 0$ for which:

 $I + \gamma \mathcal{B}_{\gamma}(\mathbf{0}) \subseteq J.$

Theorem (Completeness)

If there exists a controlled invariant set $I \subseteq \mathcal{K}(K)$ for which I_q is strictly inside $\mathcal{K}_q(K)$, then there exists an under-approximation $\check{K} = (Q \setminus F) \times \check{H}$ of K, with \check{H} being a finite union of boxes, such that $I \subseteq \mathcal{K}(\check{K})$.

 $K_{j+1} = \operatorname{pre}(K_j) \cap K_j.$

$$K_{j+1} = \operatorname{pre}(K_j) \cap K_j.$$

Each set K_j is encoded by a BDD;

$$K_{j+1} = \operatorname{pre}(K_j) \cap K_j.$$

Each set K_i is encoded by a BDD;

■ The combination of the special Brunovsky normal form with adapted sets results in a simple expression for pre(B_i) with B_i = [aⁱ₁, bⁱ₁] × ... × [aⁱ_n, bⁱ_n]:

$$\operatorname{pre}(B_i) = \mathbb{R} \times [a_1^i, b_1^i] \times \ldots \times [a_{n-1}^i, b_{n-1}^i];$$

$$K_{j+1} = \operatorname{pre}(K_j) \cap K_j.$$

Each set K_i is encoded by a BDD;

■ The combination of the special Brunovsky normal form with adapted sets results in a simple expression for pre(B_i) with B_i = [aⁱ₁, bⁱ₁] × ... × [aⁱ_n, bⁱ_n]:

$$\operatorname{pre}(B_i) = \mathbb{R} \times [a_1^i, b_1^i] \times \ldots \times [a_{n-1}^i, b_{n-1}^i];$$

■ Symbolical computation of pre(*K_j*) can be done by shifting and variable reordering.

Computational Results

Problem description:

- Σ: 3 states, 1 input;
- Safe LTL formula:

 $\Box (D \land U \land \varphi_{a} \land \varphi_{b} \land \varphi_{c})$

Computational Results

Problem description:

- Σ: 3 states, 1 input;
- Safe LTL formula:

 $\Box (D \land U \land \varphi_a \land \varphi_b \land \varphi_c)$

Parameters:

- T ∈ {2, 10} number of time steps after which speed limit is enforced;
- $N \in \{10, ..., 13\}$ number of bits (2^N boxes) used in each dimension.

Computational Results

Problem description:

- Σ: 3 states, 1 input;
- Safe LTL formula:

 $\Box (D \land U \land \varphi_a \land \varphi_b \land \varphi_c)$

Parameters:

- T ∈ {2, 10} number of time steps after which speed limit is enforced;
- $N \in \{10, ..., 13\}$ number of bits (2^N boxes) used in each dimension.

Error bound:

$$\hat{e} = \frac{\operatorname{vol} \mathcal{K}(\hat{K}) - \operatorname{vol} \mathcal{K}(\check{K})}{\operatorname{vol} \mathcal{K}(\check{K})} \geq \frac{\operatorname{vol} \mathcal{K}(K) - \operatorname{vol} \mathcal{K}(\check{K})}{\operatorname{vol} \mathcal{K}(K)}$$

Computational Results

Problem description:

- Σ : 3 states, 1 input;
- Safe LTL formula:

 $\Box (D \land U \land \varphi_{a} \land \varphi_{b} \land \varphi_{c})$

Parameters:

- T ∈ {2, 10} number of time steps after which speed limit is enforced;
- $N \in \{10, ..., 13\}$ number of bits (2^N boxes) used in each dimension.

Error bound:

$$\hat{\mathbf{e}} = \frac{\operatorname{vol} \mathcal{K}(\hat{K}) - \operatorname{vol} \mathcal{K}(\check{K})}{\operatorname{vol} \mathcal{K}(\check{K})} \geq \frac{\operatorname{vol} \mathcal{K}(K) - \operatorname{vol} \mathcal{K}(\check{K})}{\operatorname{vol} \mathcal{K}(K)}$$

N\T	2		10	
	tr	ê	tr	ê
10	1m39s	2.31	2m40s	2.38
11	4m09s	1.01	4m31s	1.04
12	6m48s	0.58	7m52s	0.62
13	10m38s	0.43	16m01s	0.46

Comparison with the Polyhedral Approach

- Example 5.1 in [Pérez et al., 2011]:
 3 states + 2 inputs
- Workspace:
 - $X = [0, 30]^3$ and $U = [0, 2]^2$
- Obstacles in the state space:

•
$$O_1 = [-5, 15]^3$$

• $O_2 = [-5, 5]^3$
• $O_3 = [-15, 10]^3$

Obstacles in the input space:

•
$$V_1 = [-3/2, 1/2]^2$$

• $V_2 = [-1/4, 1/4]^2$
• $V_3 = [2/5, 1/5]^2$

Specification with increasing complexity:

$$\varphi_0 = \Box(X \times U)$$

$$\varphi_1 = \Box((X \wedge \neg O_1) \times U)$$

$$\varphi_2 = \Box(X \times (U \wedge \neg V_1))$$

$$\varphi_3 \quad = \quad \Box((X \wedge \neg O_1) \times (U \wedge \neg V_1))$$

$$\varphi_4 = \Box((X \wedge_{i=1}^2 \neg O_i) \times (U \wedge_{i=1}^2 \neg V_i))$$

$$\varphi_5 \quad = \quad \Box((X \wedge_{i=1}^3 \neg O_i) \times (U \wedge_{i=1}^2 \neg V_i))$$

$$\varphi_6 \quad = \quad \Box((X \wedge_{i=1}^3 \neg O_i) \times (U \wedge_{i=1}^3 \neg V_i))$$

Comparison with the Polyhedral Approach

- Example 5.1 in [Pérez et al., 2011]:
 3 states + 2 inputs
- Workspace:
 - $X = [0, 30]^3$ and $U = [0, 2]^2$
- Obstacles in the state space:
 - $O_1 = [-5, 15]^3$ • $O_2 = [-5, 5]^3$ • $O_3 = [-15, 10]^3$
- Obstacles in the input space:

•
$$V_1 = [-3/2, 1/2]^2$$

• $V_2 = [-1/4, 1/4]^2$
• $V_3 = [2/5, 1/5]^2$

Specification with increasing complexity:

$$\begin{array}{rcl} \varphi_0 & = & \Box(X \times U) \\ \varphi_1 & = & \Box((X \wedge \neg O_1) \times U) \\ \varphi_2 & = & \Box(X \times (U \wedge \neg V_1)) \end{array}$$

Computation times:

Comparison with the Polyhedral Approach

- Example 5.1 in [Pérez et al., 2011]:
 3 states + 2 inputs
- Workspace:
 - $X = [0, 30]^3$ and $U = [0, 2]^2$
- Obstacles in the state space:
 - $O_1 = [-5, 15]^3$ • $O_2 = [-5, 5]^3$ • $O_3 = [-15, 10]^3$
- Obstacles in the input space:

•
$$V_1 = [-3/2, 1/2]^2$$

• $V_2 = [-1/4, 1/4]^2$
• $V_3 = [2/5, 1/5]^2$

Specification with increasing complexity:

$$\begin{array}{rcl} \varphi_0 & = & \Box(X \times U) \\ \varphi_1 & = & \Box((X \wedge \neg O_1) \times U) \\ \varphi_2 & = & \Box(X \times (U \wedge \neg V_1)) \end{array}$$

Computation times:

Algorithm to synthesize controllers enforcing safe LTL specification on controllable linear systems:

- Termination guarantees;
- Best possible completeness guarantees;
- Full symbolic implementation;
- Five continuous variables (state of the art).

Algorithm to synthesize controllers enforcing safe LTL specification on controllable linear systems:

- Termination guarantees;
- Best possible completeness guarantees;
- Full symbolic implementation;
- Five continuous variables (state of the art).

What is next?

- Boxes are not good enough (too many required to obtain reasonable approximations, CoD);
- Find more general polyhedra for which termination is guaranteed.

Literature

Bertsekas, D. (1972).

Infinite time reachability of state-space regions by using feedback control. *IEEE TAC*, 17:604–613.

Blanchini, F. and Miani, S. (2008).

Set-Theoretic Methods in Control. Systems & Control: Foundations & Applications. Birkhäuser.

De Santis, E., Di Benedetto, M. D., and Berardi, L. (2004).

Computation of maximal safe sets for switching systems. IEEE TAC, 49:184–195.

Kupferman, O. and Vardi, M. Y. (2001).

Model checking of safety properties. Formal Methods in System Design, 19:291–314.

Pérez, E., Ariño, C., Blasco, F. X., and Martínez, M. A. (2011).

Maximal closed loop admissible set for linear systems with non-convex polyhedral constraints. Journal of Process Control, pages 529 – 537.

1

Tabuada, P. and Pappas, G. J. (2003).

Model checking LTL over controllable linear systems is decidable. In HSCC, LNCS, pages 498–513. Springer.

Tabuada, P. and Pappas, G. J. (2006).

Linear time logic control of discrete-time linear systems. *IEEE TAC*, 51:1862–1877.