
Quantitative Verification of
Embedded Software:

The GameTime Approach

Quantitative Verification of
Embedded Software:

The GameTime Approach
Sanjit A. Seshia

Associate Professor
EECS Department

UC Berkeley

April 2013

Students:
J. Kotker, D. Sadigh, Z. Wasson, J. Ferguson, S. Jain, M. Xu, A. Chan

Collaborators: A. Rakhlin

– 2 –

Verification “=” SynthesisVerification “=” Synthesis

 Different from a definitional and complexity-
theoretic viewpoint

 Similar from the viewpoint of algorithmic solution

 Synthesis in Verification
– The hard parts of verification involve synthesis

“sub-tasks”
 Verification in Synthesis

– Synthesis typically involves a verification check
(e.g., equivalence checking for circuits)

S. A. Seshia, “Sciduction: Combining Induction, Deduction,
and Structure for Verification and Synthesis”, DAC 2012

– 3 –

Artifacts Synthesized in VerificationArtifacts Synthesized in Verification

 Inductive / auxiliary invariants
 Auxiliary specifications (e.g., pre/post-

conditions, function summaries)
 Environment assumptions / Env model /

interface specifications
 Abstraction functions / abstract models
 Interpolants
 Ranking functions
 Intermediate lemmas for compositional

reasoning
 Theory lemma instances in SMT solving
 …

– 4 –

Quantitative Verification of
Embedded Software
Quantitative Verification of
Embedded Software

Verifier

Program /
Env Model

Property
R

Models include quantitative parameters

Results only as accurate as the model (parameters)

time,
power,

reliability,
velocity, position, etc.

– 5 –

Example: Deadline PropertiesExample: Deadline Properties

Does the brake-by-wire software
task always actuate the brakes
within 1 ms?

Safety-critical real-time embedded
systems

Need to perform Timing Analysis

– 6 –

Challenge in Timing AnalysisChallenge in Timing Analysis

Does the brake-by-wire software
always actuate the brakes within
1 ms?

NASA’s Toyota UA report (2011) mentions:
“In practice…there are significant limitations”
(in the state of the art in timing analysis).

CHALLENGE: ENVIRONMENT MODELING
Need a good model of the platform
(processor, memory hierarchy, network, I/O devices, etc.)

– 7 –

This TalkThis Talk

 What makes Timing Analysis Hard
 The GameTime Approach

– Learning Program-Specific Environment Model
 Inductive Synthesis

 Generalization: Induction + Deduction
– Several applications in Verification & Synthesis

– 8 –

Current State-of-the-art for
Timing Analysis
Current State-of-the-art for
Timing Analysis

 Program = Sequential,
terminating program

 Runs uninterrupted

 Environment =
Single-core Processor +
Instruction/Data Cache

Abstract
Timing Model

PROBLEM:
Takes several man-

months to construct!
Also: limited to

extreme-case analysis

– 9 –

Complexity of a Timing Model:
Path Space x Platform State Space
Complexity of a Timing Model:
Path Space x Platform State Space

flag!=0

flag!=0

flag=1;
(*x)++;

Program CFG unrolled
to a DAG

*x += 2;

On a processor
with a data
cache

x

Timing of an edge (basic
block) depends on:
• Path it lies on
• Initial platform state

Challenges:
• Exponential number of
paths and platform states!
• Lack of visibility into
platform state

– 10 –

Example: Automotive Window ControllerExample: Automotive Window Controller

~ 1000 lines
of C code

~ 1016 paths

– 11 –

OutlineOutline

 What makes Timing Analysis Hard
 The GameTime Approach

– Learning Program-Specific Environment Model
 Inductive Synthesis

 Generalization: Induction + Deduction
– Several applications in Verification & Synthesis

– 12 –

Our Approach and ContributionsOur Approach and Contributions

Model the estimation problem as a Game
– Tool vs. Platform

 Measurement-based, but minimal instrumentation
– Perform end-to-end measurements of selected

(linearly many) paths on platform
 Learn Environment Model

– Similar to online shortest path in the ‘bandit’ setting
 Online, randomized algorithm: GameTime

– Theoretical guarantee: can predict worst-case path
with arbitrarily high probability under model
assumptions

 Uses satisfiability modulo theories (SMT) solvers
for test generation

[ICCAD ’08, ACM TECS’12]

– 13 –

The Game FormulationThe Game Formulation

 Complexity ‘=’ Path Space x Platform State Space
(controllable) (uncontrollable)

 Model as a 2-player Game: Tool vs. Platform
– Tool selects program paths
– Platform ‘selects’ its state (possibly adversarially)

 Questions:
– What is a good class of platform models?
– How to select paths so that we can learn an

accurate platform model by executing those?

– 14 –

Platform Model Platform Model

Nominal weight on edge of unrolled CFG
+

Path-specific perturbation

Models path-dependent timing

Models path-independent timing

w


+

Platform selects weights for edges of the CFG

– 15 –

A Path is a Vector x ∈ {0,1}mA Path is a Vector x ∈ {0,1}m

1

1

1

1

1

1

(m = #edges)

Insight:
Only need to sample

a Basis
of the space of paths

– 16 –

Basis Paths Basis Paths

1

1

1

1

1

1

#(basis paths
� m

Useful to compute
certain special
bases called
“barycentric
spanners”

< 200 basis paths
for automotive

controller

– 17 –

Timing Analysis Game (Our Model)Timing Analysis Game (Our Model)

Played over several rounds t = 1, 2, 3, …, 

Tool
picks xt

CFG
1

Platform
picks wt

5
7

11

At each round t:

Tool observes lt = xt ·(wt + t)

Platform picks t(xt)
(-1, -1, -1, -1)

(5+7+1+11) - 4 = 20
At round  : Tool makes prediction (longest path x*)
 Tool wins iff its prediction is correct

– 18 –

Theorem about Estimating Distribution
(pictorial view)
Theorem about Estimating Distribution
(pictorial view)

 is O(b max)

Mean Perturbation
Assumption: ∀ x ∈ Paths
| E [x . t] | � max

– 19 –

Some Experimental ResultsSome Experimental Results

 GameTime is Efficient
– E.g.: 7 x 1016 total paths vs. < 200 basis paths

 Accurately predicts WCET for complex platforms
– I & D caches, pipeline, branch prediction, …

 Basis paths effectively encode information about
timing of other paths
– Found paths 25% longer than sampled basis

 GameTime can accurately estimate the distribution
of execution times with few measurements
– Measure basis paths, predict other paths

(details in ICCAD’08, ACM TECS, FMCAD’11 papers)

– 20 –

Recent ResultsRecent Results

 Timing analysis of
interrupt-driven programs
[FMCAD 2011]
– Idea: context-bounded

analysis + GameTime

 Energy estimation on
embedded devices
– Use GameTime algorithm

with iCount hardware
[P. Dutta et al.]

– 21 –

Generalizing the GameTime ApproachGeneralizing the GameTime Approach

 Identify “Synthesis Sub-task” in verification
– Environment Modeling

 Make a Structure Hypothesis
– w +  model for the platform

 Use Inductive Inference
– learning from measurements

 Combine with Deductive Reasoning
– SAT/SMT solving for test generation

S. A. Seshia, “Sciduction: Combining Induction, Deduction, and Structure
for Verification and Synthesis,” Tech. report, UCB/EECS, May 2011 & DAC 2012.

– 22 –

Induction + Deduction + Structure
Other Projects
Induction + Deduction + Structure
Other Projects

 Switching logic synthesis for hybrid systems
– For safety and optimality
– [Jha et al., ICCPS 2010, EMSOFT 2011]

 Program synthesis, malware analysis
– [Jha et al., ICSE 2010]

 Synthesizing fixed-point code from floating-point
specifications
– [Jha & Seshia, 2011]

 Controller synthesis from temporal logic
– [Li et al., MEMOCODE 2011]

 Hardware verification
– [Brady et al., FMCAD 2011]

