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A Grand Challenge

A control system should be delivered with

1 A specification of closed loop requirements

2 A network of interconnected process models

(including controller hardware)

3 A controller code

4 A certificate proving that code and processes together

meet the requirements. Validation of certificates must

scale linearly with the number of interconnected

components.

Is this possible?



A Standard Setup

For quadratic requirements, linear process model and linear

control algorithm, verification is straightforward...

... but is it scalable?



A Standard Setup

For quadratic requirements, linear process model and linear

control algorithm, verification is straightforward...

... but is it scalable?



A servo with friction

2s  +2s+12

.01s  +s2

Transfer Fcn
Sum1Sum

Step

Scope

Saturation

s

1

Integrator1
s

1

Integrator

-K-

Gain2

-1

Gain1

10

Gain

Simulations show stability.

The circle criterion can prove stability.

But what if the feedback controller induces time delays?
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Stability by simulation

Every cross represents a stable simulation.

But what about in between?



Outline

Integral Quadratic Constraints

A Matlab tool for verification

Scalability

Conclusions



Integral Quadratic Constraint

∆ -- ∆vv

The (possibly nonlinear) operator ∆ on Lm2 [0,∞) is said to

satisfy the IQC defined by Π if

∫ ∞

−∞

[
v̂(iω )

(̂∆v)(iω )

]∗

Π(iω )

[
v̂(iω )

(̂∆v)(iω )

]
dω ≥ 0

for all v ∈ L2[0,∞).



∆ structure Π(iω ) Condition

∆ passive

[
0 I

I 0

]

q∆(iω )q ≤ 1

[
x(iω )I 0

0 −x(iω )I

]
x(iω ) ≥ 0

δ ∈ [−1, 1]

[
X (iω ) Y(iω )
Y(iω )∗ −X (iω )

]
X = X ∗ ≥ 0
Y = −Y∗

δ (t) ∈ [−1, 1]

[
X Y

YT −X

]

∆(s) = e−θ s − 1

[
x(iω )ρ(ω )2 0

0 −x(iω )

]
ρ(ω ) =

2maxpθ p≤θ0 sin(θω/2)



IQC Stability Theorem

G(s)

τ ∆

c

c

��
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Let G(s) be stable and proper and let ∆ be causal.

For all τ ∈ [0, 1], suppose the loop is well posed and τ ∆

satisfies the IQC defined by Π(iω ). If

[
G(iω )
I

]∗

Π(iω )

[
G(iω )
I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.



S-procedure

The inequality

σ 0(h) ≤ 0

follows from the inequalities

σ 1(h) ≥ 0, . . . ,σ n(h) ≥ 0

if there exist τ1, . . . ,τn ≥ 0 such that

σ 0(h) +
∑

k

τ kσ k(h) ≤ 0 ∀h



Underlying Math Problem

Given a number of symmetric matrices, find a convex

combination that is positive definite!
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A Matlab toolbox for system analysis
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>> abst_init_iqc;

>> G = tf([10 0 0],[1 2 2 1]);

>> e = signal

>> w = signal

>> y = -G*(e+w)

>> w==iqc_monotonic(y)

>> iqc_gain_tbx(e,y)



An analysis model defined graphically
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>> iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5

states: 10

simple q-forms: 7

LMI #1 size = 1 states: 0

LMI #2 size = 1 states: 0

LMI #3 size = 1 states: 0

LMI #4 size = 1 states: 0

LMI #5 size = 1 states: 0

Solving with 62 decision variables ...

ans = 4.7139



Verification by IQCs

IQCs prove stability below the lower line.



A library of analysis objects
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The friction example in text format

d=signal; % disturbance signal

e=signal; % error signal

w1=signal; % friction force

w2=signal; % delay perturbation

u=signal; % control force

v=tf(1,[1 0])*(u-w1) % velocity

x=tf(1,[1 0])*v; % position

e==d-x-w2;

u==10*tf([2 2 1],[0.01 1 0.01])*e;

w1==iqc_monotonic(v,0,[1 5],10)

w2==iqc_cdelay(x,.01)

iqc_gain_tbx(d,e)
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A Matrix Decomposition Theorem

A banded matrix is positive semi-definite if and only if it can be

written as a sum of positive semi-definite matrices with the

structure on the right.
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Proof idea

The decomposition follows immediately from the band structure

of the Cholesky factors:
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[Martin and Wilkinson, 1965]



Generalization

Cholesky factors inherit the sparsity structure of the symmetric

matrix if and only if the sparsity pattern corresponds to a

“chordal” graph.
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[Blair & Peyton, An introduction to chordal graphs and clique trees, 1992]

If chordality fails, the condition is still sufficient!
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2 A network of interconnected process models

(including controller hardware)

3 A controller code

4 A certificate proving that code and processes together

meet the requirements. Validation of certificates must

scale linearly with the number of interconnected

components.

Requirements and process models as quadratic inequalities.

If quadratic inequalities verified for controller code, then global

verification is possible! Matrix decomposition gives certificate.


